217 lines
4.1 KiB
Go
217 lines
4.1 KiB
Go
package lib
|
|
|
|
import (
|
|
"fmt"
|
|
"math"
|
|
"math/rand"
|
|
|
|
"golang.org/x/exp/slices"
|
|
)
|
|
|
|
type Board struct {
|
|
grid [16]int
|
|
empty [2]int
|
|
}
|
|
|
|
const ROW_COUNT = 4
|
|
|
|
var SOLVED_GRID = [16]int{
|
|
1, 2, 3, 4,
|
|
5, 6, 7, 8,
|
|
9, 10, 11, 12,
|
|
13, 14, 15, 0,
|
|
}
|
|
|
|
type Direction int
|
|
|
|
const (
|
|
LEFT Direction = iota
|
|
RIGHT
|
|
UP
|
|
DOWN
|
|
)
|
|
|
|
func NewBoard() *Board {
|
|
return &Board{
|
|
grid: [16]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0},
|
|
empty: [2]int{3, 3},
|
|
}
|
|
}
|
|
|
|
// If all pieces on their desired places
|
|
// no more moves are needed and we can say that
|
|
// board is solved.
|
|
func (board *Board) Solved() bool {
|
|
return board.NeededMoves() == 0
|
|
}
|
|
|
|
// Faster way to check if board is solved.
|
|
// Arrays are comparable in Go so we can simply
|
|
// compare desired state with current
|
|
func (board *Board) SolvedFast() bool {
|
|
return board.grid == SOLVED_GRID
|
|
}
|
|
|
|
func (b *Board) Print() {
|
|
for i, cell := range b.grid {
|
|
if cell == 0 {
|
|
fmt.Printf(" ")
|
|
} else {
|
|
fmt.Printf("%3d", cell)
|
|
}
|
|
if i == 3 || i == 7 || i == 11 {
|
|
fmt.Println()
|
|
}
|
|
}
|
|
fmt.Println()
|
|
}
|
|
|
|
func (b *Board) PossibleDirections() []Direction {
|
|
directions := []Direction{}
|
|
|
|
if b.empty[0] != 0 {
|
|
directions = append(directions, UP)
|
|
}
|
|
|
|
if b.empty[0] != 3 {
|
|
directions = append(directions, DOWN)
|
|
}
|
|
|
|
if b.empty[1] != 0 {
|
|
directions = append(directions, LEFT)
|
|
}
|
|
|
|
if b.empty[1] != 3 {
|
|
directions = append(directions, RIGHT)
|
|
}
|
|
|
|
return directions
|
|
}
|
|
|
|
// "Moves" empty cell to new position.
|
|
// It's easier to reason if we will move
|
|
// empty cell as another piece rather than
|
|
// moving pieces that are surrounds it.
|
|
func (b *Board) Move(d Direction) {
|
|
possibleDirections := b.PossibleDirections()
|
|
|
|
if slices.Index(possibleDirections, d) == -1 {
|
|
return
|
|
}
|
|
|
|
toRow, toCol := directionToStep(d)
|
|
|
|
newRow := b.empty[0] + toRow
|
|
newCol := b.empty[1] + toCol
|
|
|
|
piceToSwap := b.get(newRow, newCol)
|
|
|
|
b.set(b.empty[0], b.empty[1], piceToSwap)
|
|
b.set(newRow, newCol, 0)
|
|
|
|
b.empty[0] = newRow
|
|
b.empty[1] = newCol
|
|
}
|
|
|
|
func (b *Board) Copy() *Board {
|
|
return &Board{
|
|
grid: b.grid,
|
|
empty: b.empty,
|
|
}
|
|
}
|
|
|
|
func (b *Board) Shuffle(steps int) []Direction {
|
|
moves := []Direction{}
|
|
|
|
for i := 0; i < steps; i++ {
|
|
possibleDirections := b.PossibleDirections()
|
|
|
|
// Remove opposite moves to prevent
|
|
// moving around one cell
|
|
if len(moves) != 0 {
|
|
last := moves[len(moves)-1]
|
|
possibleDirections = slices.DeleteFunc(
|
|
possibleDirections,
|
|
func(direction Direction) bool {
|
|
return oppositeDirections(direction, last)
|
|
})
|
|
}
|
|
|
|
rand.Shuffle(len(possibleDirections), func(i, j int) {
|
|
possibleDirections[i], possibleDirections[j] = possibleDirections[j], possibleDirections[i]
|
|
})
|
|
|
|
nextMove := possibleDirections[0]
|
|
|
|
b.Move(nextMove)
|
|
|
|
moves = append(moves, nextMove)
|
|
}
|
|
|
|
return moves
|
|
}
|
|
|
|
// Optimistic number. Indicates
|
|
// sum of number of moves each board piece should do
|
|
// to get to desired position. It ignores real "circular"
|
|
// moves and calculates moves as if only one piece exists on the board.
|
|
func (board *Board) NeededMoves() int {
|
|
neededMoves := 0
|
|
|
|
for row := 0; row < 4; row++ {
|
|
for col := 0; col < 4; col++ {
|
|
|
|
number := board.get(row, col)
|
|
|
|
if number == 0 {
|
|
continue
|
|
}
|
|
|
|
neededMoves += rectilinearDistance(number, row, col)
|
|
}
|
|
}
|
|
|
|
return neededMoves
|
|
}
|
|
|
|
func (b *Board) get(row, col int) int {
|
|
return b.grid[row*ROW_COUNT+col]
|
|
}
|
|
|
|
func (b *Board) set(row, col, val int) {
|
|
b.grid[row*ROW_COUNT+col] = val
|
|
}
|
|
|
|
func originalPosition(number int) (int, int) {
|
|
return (number - 1) / 4, (number - 1) % 4
|
|
}
|
|
|
|
// Or "Manhattan distance". We use it to calculate "shortest" path
|
|
// to desired piece position.
|
|
// https://en.wikipedia.org/wiki/Taxicab_geometry
|
|
func rectilinearDistance(number, i, j int) int {
|
|
origRow, origCol := originalPosition(number)
|
|
return int(math.Abs(float64(origRow-i)) + math.Abs(float64(origCol-j)))
|
|
}
|
|
|
|
func directionToStep(d Direction) (int, int) {
|
|
switch d {
|
|
case UP:
|
|
return -1, 0
|
|
case DOWN:
|
|
return 1, 0
|
|
case LEFT:
|
|
return 0, -1
|
|
case RIGHT:
|
|
return 0, 1
|
|
default:
|
|
return 0, 0
|
|
}
|
|
}
|
|
|
|
func oppositeDirections(a Direction, b Direction) bool {
|
|
ar, al := directionToStep(a)
|
|
br, bl := directionToStep(b)
|
|
|
|
return ar+br == 0 && al+bl == 0
|
|
}
|