
C Piscine
Day 04

Staff 42 pedago@42.fr

Abstract: This document is the subject for Day04 of the C Piscine @ 42.

pedago@42.fr

Contents
I Instructions 2

II Foreword 4

III Exercise 00 : ft_iterative_factorial 5

IV Exercise 01 : ft_recursive_factorial 6

V Exercise 02 : ft_iterative_power 7

VI Exercise 03 : ft_recursive_power 8

VII Exercise 04 : ft_fibonacci 9

VIII Exercise 05 : ft_sqrt 10

IX Exercise 06 : ft_is_prime 11

X Exercise 07 : ft_find_next_prime 12

XI Exercise 08 : The Eight Queens 13

XII Exercise 09 : The Eight Queens 2 14

1

Chapter I

Instructions

• Only this page will serve as reference: do not trust rumors.

• Watch out! This document could potentially change up to an hour before submis-
sion.

• Make sure you have the appropriate permissions on your files and directories.

• You have to follow the submission procedures for all your exercises.

• Your exercises will be checked and graded by your fellow classmates.

• On top of that, your exercises will be checked and graded by a program called
Moulinette.

• Moulinette is very meticulous and strict in its evaluation of your work. It is entirely
automated and there is no way to negotiate with it. So if you want to avoid bad
surprises, be as thorough as possible.

• Moulinette is not very open-minded. It won’t try and understand your code if it
doesn’t respect the Norm. Moulinette relies on a program called Norminator to
check if your files respect the norm. TL;DR: it would be idiotic to submit a piece
of work that doesn’t pass Norminator’s check.

• These exercises are carefully laid out by order of difficulty - from easiest to hardest.
We will not take into account a successfully completed harder exercise if an easier
one is not perfectly functional.

• Using a forbidden function is considered cheating. Cheaters get -42, and this grade
is non-negotiable.

• If ft_putchar() is an authorized function, we will compile your code with our
ft_putchar.c.

• You’ll only have to submit a main() function if we ask for a program.

2

C Piscine Day 04

• Moulinette compiles with these flags: -Wall -Wextra -Werror, and uses gcc.

• If your program doesn’t compile, you’ll get 0.

• You cannot leave any additional file in your directory than those specified in the
subject.

• Got a question? Ask your peer on your right. Otherwise, try your peer on your
left.

• Your reference guide is called Google / man / the Internet /

• Check out the "C Piscine" part of the forum on the intranet.

• Examine the examples thoroughly. They could very well call for details that are
not explicitly mentioned in the subject...

• By Odin, by Thor ! Use your brain !!!

Norminator must be launched with the -R CheckForbiddenSourceHeader
flag. Moulinette will use it too.

3

Chapter II

Foreword

Here are some quotes by Archer :

“For I am a sinner in the hands of an angry God. Bloody Mary, full of vodka,
blessed are you among cocktails. Pray for me now and at the hour of my death,
which I hope is soon. Amen.” - Archer

“I need access to a two inch drain, hot water, three GFCI outlets—this bathroom
should do nicely—and a pot of coffee just like I like my women: Black, bitter,
preferably fair trade. Oh, and your sauce needs less salt.” — Krieger

“I swear to god, you could drown a toddler in my panties right now! I mean, not
that you would.” - Pam

"And he’s like... - You’re a moped. - How’d you know ? And what does that mean
anyway ? - Mopeds are fun, but you don’t want your buddies to see you riding
one. - Oh. I thought he meant I was fuel-efficient !" - Pam & Cheryl

"For god’s sake, Pam! Have you no sense of decency? That bathroom’s like a... a
war crime." - Cyril

"I have to go. But if I find one single dog hair when I get back, I’ll rub...
sand... in your dead little eyes. I also need you to go buy sand. I don’t know
if they grade it, but... ...coarse." - Archer

“I love that I have an erection... that didn’t involve homeless
people.” — Krieger

“No no no no, like a big sweaty fireman carries you out of a burning building,
lays you on the sidewalk and you think "yeah, ok, he’s going to give me mouth to
mouth", but instead, he just starts choking the SHIT out of you, and the last
sensation you feel before you die, is that he’s squeezing your throat so hard
that a big, wet, blob of drool drips off his teeth and just, ’blurp’, falls
right onto your popped-out eyeball.” — Cheryl

Unfortunately, this subject’s got nothing to do with the series Archer, which is too
bad, ćause Archer is (or should be) everybody’s role model. No kidding.

4

Chapter III

Exercise 00 : ft_iterative_factorial

Exercice : 00

ft_iterative_factorial
Turn-in directory : ex00/

Files to turn in : ft_iterative_factorial.c
Allowed functions : Nothing
Remarks : n/a

• Create an iterated function that returns a number. This number is the result of a
factorial operation based on the number given as a parameter.

• If there’s an error, the function should return 0.

• Here’s how it should be prototyped :

int ft_iterative_factorial(int nb);

• Your function must return its result in less than two seconds.

5

Chapter IV

Exercise 01 : ft_recursive_factorial

Exercice : 01

ft_recursive_factorial
Turn-in directory : ex01/

Files to turn in : ft_recursive_factorial.c
Allowed functions : Nothing
Remarks : n/a

• Create a recursive function that returns the factorial of the number given as a
parameter.

• If there’s an error, the function should return 0.

• Here’s how it should be prototyped :

int ft_recursive_factorial(int nb);

6

Chapter V

Exercise 02 : ft_iterative_power

Exercice : 02

ft_iterative_power
Turn-in directory : ex02/

Files to turn in : ft_iterative_power.c
Allowed functions : Nothing
Remarks : n/a

• Create an iterated function that returns the value of a power applied to a number.
An power lower than 0 returns 0. Overflows don’t have to be handled.

• Here’s how it should be prototyped :

int ft_iterative_power(int nb, int power);

• Your function must return its result in less than two seconds.

7

Chapter VI

Exercise 03 : ft_recursive_power

Exercice : 03

ft_recursive_power
Turn-in directory : ex03/

Files to turn in : ft_recursive_power.c
Allowed functions : Nothing
Remarks : n/a

• Create a recursive function that returns the value of a power applied to a number.

• Same conditions as before.

• Here’s how it should be prototyped :

int ft_recursive_power(int nb, int power);

8

Chapter VII

Exercise 04 : ft_fibonacci

Exercice : 04

ft_fibonacci
Turn-in directory : ex04/

Files to turn in : ft_fibonacci.c
Allowed functions : Nothing
Remarks : n/a

• Create a function ft_fibonacci that returns the n-th element of the Fibonacci
sequence, the first element being at the 0 index. We’ll consider that the Fibonacci
sequence starts like this: 0, 1, 1, 2.

• Here’s how it should be prototyped :

int ft_fibonacci(int index);

• Obviously, ft_fibonacci has to be recursive.

• If the index is less than 0, the function should return -1.

9

Chapter VIII

Exercise 05 : ft_sqrt

Exercice : 05

ft_sqrt
Turn-in directory : ex05/

Files to turn in : ft_sqrt.c
Allowed functions : Nothing
Remarks : n/a

• Create a function that returns the square root of a number (if it exists), or 0 if the
square root is an irrational number.

• Here’s how it should be prototyped :

int ft_sqrt(int nb);

• Your function must return its result in less than two seconds.

10

Chapter IX

Exercise 06 : ft_is_prime

Exercice : 06

ft_is_prime
Turn-in directory : ex06/

Files to turn in : ft_is_prime.c
Allowed functions : Nothing
Remarks : n/a

• Create a function that returns 1 if the number given as a parameter is a prime
number, and 0 if it isn’t.

• Here’s how it should be prototyped :

int ft_is_prime(int nb);

• Your function must return its result in less than two seconds.

0 and 1 are not prime numbers.

11

Chapter X

Exercise 07 : ft_find_next_prime

Exercice : 07

ft_find_next_prime
Turn-in directory : ex07/

Files to turn in : ft_find_next_prime.c
Allowed functions : Nothing
Remarks : n/a

• Create a function that returns the next prime number greater or equal to the number
given as argument.

• Here’s how it should be prototyped :

int ft_find_next_prime(int nb);

• Your function must return its result in less than two seconds.

12

Chapter XI

Exercise 08 : The Eight Queens

Exercice : 08

The Eight Queens 1
Turn-in directory : ex08/

Files to turn in : ft_eight_queens_puzzle.c
Allowed functions : Nothing
Remarks : n/a

• The aim of this game is to place eight queens on a chessboard, without them being
able to meet in one shot.

• Refresh your memories on chess rules.

• Evidently, recurstivity is required to solve this problem.

• Create a function that returns the number of possibilities to place those eight queens
on the chessboard without them being able to reach each other.

• Here’s how it should be prototyped :

int ft_eight_queens_puzzle(void);

• Your function must return its result in less than two seconds.

13

Chapter XII

Exercise 09 : The Eight Queens 2

Exercice : 09

The Eight Queens 2
Turn-in directory : ex09/

Files to turn in : ft_eight_queens_puzzle_2.c
Allowed functions : ft_putchar
Remarks : n/a

• Create a function that displays all possible placements of the eight queens on the
chessboard, without them being able to reach each other.

• Recursivity is required to solve this problem.

• Here’s how it should be prototyped :

void ft_eight_queens_puzzle_2(void);

• Here’s how it’ll be displayed :
$>./a.out
15863724
16837425
17468253
...

• The sequence goes from left to right. The first digit represents the first Queen’s
position in the first column (the index starting from 1). The Nth digit represents
the Nth Queen’s position in the Nth column.

• There’s a line break after the last solution.

• Your function must return its result in less than two seconds.

14

	Instructions
	Foreword
	Exercise 00 : ft_iterative_factorial
	Exercise 01 : ft_recursive_factorial
	Exercise 02 : ft_iterative_power
	Exercise 03 : ft_recursive_power
	Exercise 04 : ft_fibonacci
	Exercise 05 : ft_sqrt
	Exercise 06 : ft_is_prime
	Exercise 07 : ft_find_next_prime
	Exercise 08 : The Eight Queens
	Exercise 09 : The Eight Queens 2

