
C Piscine
Day 13

Staff 42 pedago@42.fr

Abstract: This document is the subject for Day13 of the C Piscine @ 42.

pedago@42.fr


Contents
I Instructions 2

II Foreword 4

III Exercise 00 : btree_create_node 5

IV Exercise 01 : btree_apply_prefix 6

V Exercise 02 : btree_apply_infix 7

VI Exercise 03 : btree_apply_suffix 8

VII Exercise 04 : btree_insert_data 9

VIII Exercise 05 : btree_search_item 10

IX Exercise 06 : btree_level_count 11

X Exercise 07 : btree_apply_by_level 12

XI Provisional instructions 13

XII Exercise 08: rb_insert 14

XIII Exercise 09: rb_remove 15

1



Chapter I

Instructions

• Only this page will serve as reference: do not trust rumors.

• Watch out! This document could potentially change up to an hour before submis-
sion.

• Make sure you have the appropriate permissions on your files and directories.

• You have to follow the submission procedures for every exercise.

• Your exercises will be checked and graded by your fellow classmates.

• On top of that, your exercises will be checked and graded by a program called
Moulinette.

• Moulinette is very meticulous and strict in its evaluation of your work. It is entirely
automated and there is no way to negotiate with it. So if you want to avoid bad
surprises, be as thorough as possible.

• Moulinette is not very open-minded. It won’t try and understand your code if it
doesn’t respect the Norm. Moulinette relies on a program called Norminator to
check if your files respect the norm. TL;DR: it would be idiotic to submit a piece
of work that doesn’t pass Norminator’s check.

• These exercises are carefully laid out by order of difficulty - from easiest to hardest.
We will not take into account a successfully completed harder exercise if an easier
one is not perfectly functional.

• Using a forbidden function is considered cheating. Cheaters get -42, and this grade
is non-negotiable.

• If ft_putchar() is an authorized function, we will compile your code with our
ft_putchar.c.

• You’ll only have to submit a main() function if we ask for a program.

2



C Piscine Day 13

• Moulinette compiles with these flags: -Wall -Wextra -Werror, and uses gcc.

• If your program doesn’t compile, you’ll get 0.

• You cannot leave any additional file in your directory than those specified in the
subject.

• Got a question? Ask your peer on your right. Otherwise, try your peer on your
left.

• Your reference guide is called Google / man / the Internet / ....

• Check out the "C Piscine" part of the forum on the intranet.

• Examine the examples thoroughly. They could very well call for details that are
not explicitly mentioned in the subject...

• By Odin, by Thor ! Use your brain !!!

• For the following exercises, we’ll use the following structure :

typedef struct s_btree
{

struct s_btree *left;
struct s_btree *right;
void *item;

} t_btree;

• You’ll have to include this structure in a file ft_btree.h and submit it for each
exercise.

• From exercise 01 onward, we’ll use our btree_create_node, so make arrangements
(it could be useful to have its prototype in a file ft_btree.h...).

3



Chapter II

Foreword

Here’s the list of releases for Venom :

- In League with Satan (single, 1980)
- Welcome to Hell (1981)
- Black Metal (1982)
- Bloodlust (single, 1983)
- Die Hard (single, 1983)
- Warhead (single, 1984)
- At War with Satan (1984)
- Hell at Hammersmith (EP, 1985)
- American Assault (EP, 1985)
- Canadian Assault (EP, 1985)
- French Assault (EP, 1985)
- Japanese Assault (EP, 1985)
- Scandinavian Assault (EP, 1985)
- Manitou (single, 1985)
- Nightmare (single, 1985)
- Possessed (1985)
- German Assault (EP, 1987)
- Calm Before the Storm (1987)
- Prime Evil (1989)
- Tear Your Soul Apart (EP, 1990)
- Temples of Ice (1991)
- The Waste Lands (1992)
- Venom ’96 (EP, 1996)
- Cast in Stone (1997)
- Resurrection (2000)
- Anti Christ (single, 2006)
- Metal Black (2006)
- Hell (2008)
- Fallen Angels (2011)

Today’s subject will seem easier if you listen to Venom.

4



Chapter III

Exercise 00 : btree_create_node

Exercice : 00

btree_create_node
Turn-in directory : ex00/

Files to turn in : btree_create_node.c, ft_btree.h
Allowed functions : malloc
Remarks : n/a

• Create the function btree_create_node which allocates a new element. It should
initialise its item to the argument’s value, and all other elements to 0.

• The created node’s address is returned.

• Here’s how it should be prototyped :

t_btree *btree_create_node(void *item);

5



Chapter IV

Exercise 01 : btree_apply_prefix

Exercice : 01

btree_apply_prefix
Turn-in directory : ex01/

Files to turn in : btree_apply_prefix.c, ft_btree.h
Allowed functions : Nothing
Remarks : n/a

• Create a function btree_apply_prefix which applies the function given as argu-
ment to the item of each node, using prefix traversal to search the tree.

• Here’s how it should be prototyped :

void btree_apply_prefix(t_btree *root, void (*applyf)(void *));

6



Chapter V

Exercise 02 : btree_apply_infix

Exercice : 02

btree_apply_infix
Turn-in directory : ex02/

Files to turn in : btree_apply_infix.c, ft_btree.h
Allowed functions : Nothing
Remarks : n/a

• Create a function btree_apply_infix which applies the function given as argument
to the item of each node, using infix traversal to search the tree.

• Here’s how it should be prototyped :

void btree_apply_infix(t_btree *root, void (*applyf)(void *));

7



Chapter VI

Exercise 03 : btree_apply_suffix

Exercice : 03

btree_apply_suffix
Turn-in directory : ex03/

Files to turn in : btree_apply_suffix.c, ft_btree.h
Allowed functions : Nothing
Remarks : n/a

• Create a function btree_apply_suffix which applies the function given as argu-
ment to the item of each node, using suffix traversal to search the tree.

• Here’s how it should be prototyped :

void btree_apply_suffix(t_btree *root, void (*applyf)(void *));

8



Chapter VII

Exercise 04 : btree_insert_data

Exercice : 04

btree_insert_data
Turn-in directory : ex04/

Files to turn in : btree_insert_data.c, ft_btree.h
Allowed functions : btree_create_node
Remarks : n/a

• Create a function btree_insert_data which inserts the element item into a tree.
The tree passed as argument will be sorted : for each node all lower elements are
located on the left side and all higher or equal elements on the right. We’ll also
pass a comparison function similar to strcmp as argument.

• The root parameter points to the root node of the tree. First time called, it should
point to NULL.

• Here’s how it should be prototyped :

void btree_insert_data(t_btree **root, void *item, int (*cmpf)(void *, void *));

9



Chapter VIII

Exercise 05 : btree_search_item

Exercice : 05

btree_search_item
Turn-in directory : ex05/

Files to turn in : btree_search_item.c, ft_btree.h
Allowed functions : Nothing
Remarks : n/a

• Create a function btree_search_item which returns the first element related to
the reference data given as argument. The tree should be browsed using infix
traversal . If the element isn’t found, the function should return NULL.

• Here’s how it should be prototyped :

void *btree_search_item(t_btree *root, void *data_ref, int (*cmpf)(void *, void *));

10



Chapter IX

Exercise 06 : btree_level_count

Exercice : 06

btree_level_count
Turn-in directory : ex06/

Files to turn in : btree_level_count.c, ft_btree.h
Allowed functions : Nothing
Remarks : n/a

• Create a function btree_level_count which returns the size of the largest branch
passed as argument.

• Here’s how it should be prototyped :

int btree_level_count(t_btree *root);

11



Chapter X

Exercise 07 : btree_apply_by_level

Exercice : 07

btree_apply_by_level
Turn-in directory : ex07/

Files to turn in : btree_apply_by_level.c, ft_btree.h
Allowed functions : malloc, free
Remarks : n/a

• Create a function btree_apply_by_level which applies the function passed as
argument to each node of the tree. The tree must be browsed level by level. The
function called will take three arguments :

◦ The first argument, of type void *, will correspond to the node’s item ;

◦ The second argument, of type int, corresponds to the level on which we find
: 0 for root, 1 for children, 2 for grand-children, etc. ;

◦ The third argument, of type int, is worth 1 if it’s the first node of the level,
or worth 0 otherwise.

• Here’s how it should be prototyped :

void btree_apply_by_level(t_btree *root, void (*applyf)(void *item, int current_level, int is_first_elem))

12



Chapter XI

Provisional instructions

• Let’s now work with red and black trees.
enum e_rb_color
{

RB_BLACK,
RB_RED

};

typedef struct s_rb_node
{

struct s_rb_node *parent;
struct s_rb_node *left;
struct s_rb_node *right;
void *data;
enum e_rb_color color;

} t_rb_node;

• Note : this structure begins with the same fields as the previous structure. Therefore
making it possible to use the already written functions with red and black trees
again. For those of you that are are more experienced, this is a rudimentary form
of polymorphism in C.

• You submit this structure for each exercise in a file called ft_btree_rb.h.

13



Chapter XII

Exercise 08: rb_insert

Exercice : 08

rb_insert
Turn-in directory : ex08/

Files to turn in : rb_insert.c, ft_btree_rb.h
Allowed functions : malloc
Remarks : n/a

• Create a function rb_insert that adds a new data to the the tree so that it con-
tinues to respect a red and black tree’s restrictions. The argument root points to
the tree’s root node. Upon first call, it points to NULL. We’ll also pass a comparison
function similar to strcmp as argument.

• Here’s how it should be prototyped :

void rb_insert(struct s_rb_node **root, void *data, int (*cmpf)(void *, void *));

14



Chapter XIII

Exercise 09: rb_remove

Exercice : 09

rb_remove
Turn-in directory : ex09/

Files to turn in : rb_remove.c, ft_btree_rb.h
Allowed functions : free
Remarks : n/a

• Create a function rb_remove which removes a data from the the tree so that it
continues to respect a red and black tree’s restrictions. The argument root points
to the tree’s root node. We’ll also pass a comparison function similar to strcmp
as argument, as well as a pointer to function freef which will be called, with the
element of the tree to be deleted, as argument.

• Here’s how it should be prototyped :

void rb_remove(struct s_rb_node **root, void *data, int (*cmpf)(void *, void *), void (*freef)(void *));

15


	Instructions
	Foreword
	Exercise  00 : btree_create_node
	Exercise  01 : btree_apply_prefix
	Exercise  02 : btree_apply_infix
	Exercise  03 : btree_apply_suffix
	Exercise  04 : btree_insert_data
	Exercise  05 : btree_search_item
	Exercise  06 : btree_level_count
	Exercise  07 : btree_apply_by_level
	Provisional instructions
	Exercise 08: rb_insert
	Exercise 09: rb_remove

