algorithms/searching/binary_search_tree.go

390 lines
6.9 KiB
Go
Raw Permalink Normal View History

2022-01-10 20:08:00 +02:00
package searching
import "github.com/fotonmoton/algorithms/fundamentals/queue"
type bstNode[K any, V any] struct {
left *bstNode[K, V]
right *bstNode[K, V]
key K
val V
n int64
}
// TODO: maybe pass pointers for recursive funcs?
type bst[K any, V any] struct {
root *bstNode[K, V]
cmp func(*K, *K) int
}
func NewBST[K any, V any](cmp func(*K, *K) int) SymbolTable[K, V] {
return &bst[K, V]{nil, cmp}
}
func (t *bst[K, V]) Put(key K, val V) {
t.root = t.put(key, val, t.root)
}
func (t *bst[K, V]) put(key K, val V, node *bstNode[K, V]) *bstNode[K, V] {
if node == nil {
return &bstNode[K, V]{nil, nil, key, val, 1}
}
cmp := t.cmp(&key, &node.key)
if cmp < 0 {
node.left = t.put(key, val, node.left)
}
if cmp == 0 {
node.val = val
}
if cmp > 0 {
node.right = t.put(key, val, node.right)
}
node.n = t.size(node.left) + t.size(node.right) + 1
return node
}
func (t *bst[K, V]) Get(key K) *V {
return t.get(key, t.root)
}
func (t *bst[K, V]) get(key K, node *bstNode[K, V]) *V {
if node == nil {
return nil
}
cmp := t.cmp(&key, &node.key)
if cmp < 0 {
return t.get(key, node.left)
}
if cmp > 0 {
return t.get(key, node.right)
}
return &node.val
}
func (t *bst[_, __]) Size() int64 {
return t.size(t.root)
}
func (t *bst[K, V]) size(node *bstNode[K, V]) int64 {
if node == nil {
return 0
}
return node.n
}
func (t *bst[K, _]) Min() *K {
if t.root == nil {
return nil
}
return &t.min(t.root).key
}
func (t *bst[K, V]) min(node *bstNode[K, V]) *bstNode[K, V] {
if node.left == nil {
return node
}
return t.min(node.left)
}
func (t *bst[K, _]) Max() *K {
if t.root == nil {
return nil
}
return &t.max(t.root).key
}
func (t *bst[K, V]) max(node *bstNode[K, V]) *bstNode[K, V] {
if node.right == nil {
return node
}
return t.max(node.right)
}
func (t *bst[K, V]) Floor(key K) *K {
largest := t.floor(key, t.root)
if largest == nil {
return nil
}
return &largest.key
}
func (t *bst[K, V]) floor(key K, node *bstNode[K, V]) *bstNode[K, V] {
if node == nil {
return nil
}
cmp := t.cmp(&key, &node.key)
if cmp == 0 {
return node
}
if cmp < 0 {
return t.floor(key, node.left)
}
larger := t.floor(key, node.right)
if larger != nil {
return larger
}
return node
}
func (t *bst[K, V]) Ceiling(key K) *K {
smallest := t.ceiling(key, t.root)
if smallest == nil {
return nil
}
return &smallest.key
}
func (t *bst[K, V]) ceiling(key K, node *bstNode[K, V]) *bstNode[K, V] {
if node == nil {
return nil
}
cmp := t.cmp(&key, &node.key)
if cmp == 0 {
return node
}
if cmp > 0 {
return t.ceiling(key, node.right)
}
smaller := t.ceiling(key, node.left)
if smaller != nil {
return smaller
}
return node
}
func (t *bst[K, V]) Rank(key K) int64 {
return t.rank(key, t.root)
}
func (t *bst[K, V]) rank(key K, node *bstNode[K, V]) int64 {
if node == nil {
return 0
}
cmp := t.cmp(&key, &node.key)
// If we found key in a tree then left subtree
// will always contain keys less than current node key
// and right subtree will always ontain greater keys (by BST definition).
// So we simply return left subtree size
if cmp == 0 {
return t.size(node.left)
}
// If current node key is bigger than key for which rank is searched
// we should descend deeper in left subtree
if cmp < 0 {
return t.rank(key, node.left)
}
// If we found node with key that is less than search key
// we get the size of the left subtree, add 1 to count current node in
// rank value and descend deeper in right subtree.
return 1 + t.size(node.left) + t.rank(key, node.right)
}
func (t *bst[K, V]) KeyByRank(i int64) *K {
node := t.keyByRank(i, t.root)
if node == nil {
return nil
}
return &node.key
}
func (t *bst[K, V]) keyByRank(rank int64, node *bstNode[K, V]) *bstNode[K, V] {
if node == nil {
return nil
}
// We need left subtree size to substract it from our index
// when we descend deeper in right subtree
leftSize := t.size(node.left)
if rank < leftSize {
return t.keyByRank(rank, node.left)
}
if rank > leftSize {
// We subtract left size subtree
return t.keyByRank(rank-leftSize-1, node.right)
}
return node
}
func (t *bst[K, V]) Contains(key K) bool {
return t.Get(key) == nil
}
func (t *bst[K, V]) IsEmpty() bool {
return t.Size() == 0
}
func (t *bst[K, V]) DeleteMin() {
if t.root == nil {
return
}
t.root = t.deleteMin(t.root)
}
func (t *bst[K, V]) deleteMin(node *bstNode[K, V]) *bstNode[K, V] {
if node.left == nil {
return node.right
}
node.left = t.deleteMin(node.left)
node.n = t.size(node.left) + t.size(node.right) + 1
return node
}
func (t *bst[K, V]) DeleteMax() {
if t.root == nil {
return
}
t.root = t.deleteMax(t.root)
}
func (t *bst[K, V]) deleteMax(node *bstNode[K, V]) *bstNode[K, V] {
if node.right == nil {
return node.left
}
node.right = t.deleteMax(node.right)
node.n = t.size(node.left) + t.size(node.right) + 1
return node
}
func (t *bst[K, V]) Delete(key K) {
t.root = t.delete(key, t.root)
}
func (t *bst[K, V]) delete(key K, node *bstNode[K, V]) *bstNode[K, V] {
if node == nil {
return nil
}
cmp := t.cmp(&key, &node.key)
if cmp < 0 {
node.left = t.delete(key, node.left)
} else if cmp > 0 {
node.right = t.delete(key, node.right)
} else {
// Shortcut: we can return left or right subtree if we have only one of them
// without size recalculation and pointers juggling
if node.right == nil {
return node.left
}
if node.left == nil {
return node.right
}
// Needed to delete "min" node in right subtree
tmp := node
// We substitute current node with "min" node from right subtree.
// When "node" variable will be returned to the caller "tmp" node
// will be erased by "node" value and be marked for garbage collection.
// At least it should work as described
node = t.min(tmp.right)
// We prevent "node" duplication in the tree by deleting it from right subtree
node.right = t.deleteMin(tmp.right)
// Left subtree stays unchanged
node.left = tmp.left
}
node.n = t.size(node.left) + t.size(node.right) + 1
return node
}
func (t *bst[K, V]) KeysBetween(lo, hi K) []K {
q := queue.NewQueue[K]()
t.keysBetween(lo, hi, t.root, q)
keys := make([]K, 0, q.Size())
for !q.IsEmpty() {
keys = append(keys, q.Dequeue())
}
return keys
}
func (t *bst[K, V]) keysBetween(lo, hi K, node *bstNode[K, V], q queue.Queue[K]) {
if node == nil {
return
}
cmplo := t.cmp(&lo, &node.key)
cmphi := t.cmp(&hi, &node.key)
if cmplo < 0 {
t.keysBetween(lo, hi, node.left, q)
}
if cmplo <= 0 && cmphi >= 0 {
q.Enqueue(node.key)
}
if cmphi > 0 {
t.keysBetween(lo, hi, node.right, q)
}
}
func (t *bst[K, V]) Keys() []K {
if t.IsEmpty() {
return []K{}
}
q := queue.NewQueue[K]()
t.keysBetween(*t.Min(), *t.Max(), t.root, q)
keys := make([]K, 0, q.Size())
for !q.IsEmpty() {
keys = append(keys, q.Dequeue())
}
return keys
}
func (t *bst[K, V]) SizeBetween(lo K, hi K) int64 {
q := queue.NewQueue[K]()
t.keysBetween(lo, hi, t.root, q)
return int64(q.Size())
}