394 lines
12 KiB
C
394 lines
12 KiB
C
|
/*
|
||
|
* Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
|
||
|
*
|
||
|
* Licensed under the OpenSSL license (the "License"). You may not use
|
||
|
* this file except in compliance with the License. You can obtain a copy
|
||
|
* in the file LICENSE in the source distribution or at
|
||
|
* https://www.openssl.org/source/license.html
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* NB: these functions have been "upgraded", the deprecated versions (which
|
||
|
* are compatibility wrappers using these functions) are in rsa_depr.c. -
|
||
|
* Geoff
|
||
|
*/
|
||
|
|
||
|
#include <stdio.h>
|
||
|
#include <time.h>
|
||
|
#include "internal/cryptlib.h"
|
||
|
#include <openssl/bn.h>
|
||
|
#include "rsa_locl.h"
|
||
|
|
||
|
static int rsa_builtin_keygen(RSA *rsa, int bits, int primes, BIGNUM *e_value,
|
||
|
BN_GENCB *cb);
|
||
|
|
||
|
/*
|
||
|
* NB: this wrapper would normally be placed in rsa_lib.c and the static
|
||
|
* implementation would probably be in rsa_eay.c. Nonetheless, is kept here
|
||
|
* so that we don't introduce a new linker dependency. Eg. any application
|
||
|
* that wasn't previously linking object code related to key-generation won't
|
||
|
* have to now just because key-generation is part of RSA_METHOD.
|
||
|
*/
|
||
|
int RSA_generate_key_ex(RSA *rsa, int bits, BIGNUM *e_value, BN_GENCB *cb)
|
||
|
{
|
||
|
if (rsa->meth->rsa_keygen != NULL)
|
||
|
return rsa->meth->rsa_keygen(rsa, bits, e_value, cb);
|
||
|
|
||
|
return RSA_generate_multi_prime_key(rsa, bits, RSA_DEFAULT_PRIME_NUM,
|
||
|
e_value, cb);
|
||
|
}
|
||
|
|
||
|
int RSA_generate_multi_prime_key(RSA *rsa, int bits, int primes,
|
||
|
BIGNUM *e_value, BN_GENCB *cb)
|
||
|
{
|
||
|
/* multi-prime is only supported with the builtin key generation */
|
||
|
if (rsa->meth->rsa_multi_prime_keygen != NULL) {
|
||
|
return rsa->meth->rsa_multi_prime_keygen(rsa, bits, primes,
|
||
|
e_value, cb);
|
||
|
} else if (rsa->meth->rsa_keygen != NULL) {
|
||
|
/*
|
||
|
* However, if rsa->meth implements only rsa_keygen, then we
|
||
|
* have to honour it in 2-prime case and assume that it wouldn't
|
||
|
* know what to do with multi-prime key generated by builtin
|
||
|
* subroutine...
|
||
|
*/
|
||
|
if (primes == 2)
|
||
|
return rsa->meth->rsa_keygen(rsa, bits, e_value, cb);
|
||
|
else
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
return rsa_builtin_keygen(rsa, bits, primes, e_value, cb);
|
||
|
}
|
||
|
|
||
|
static int rsa_builtin_keygen(RSA *rsa, int bits, int primes, BIGNUM *e_value,
|
||
|
BN_GENCB *cb)
|
||
|
{
|
||
|
BIGNUM *r0 = NULL, *r1 = NULL, *r2 = NULL, *tmp, *prime;
|
||
|
int ok = -1, n = 0, bitsr[RSA_MAX_PRIME_NUM], bitse = 0;
|
||
|
int i = 0, quo = 0, rmd = 0, adj = 0, retries = 0;
|
||
|
RSA_PRIME_INFO *pinfo = NULL;
|
||
|
STACK_OF(RSA_PRIME_INFO) *prime_infos = NULL;
|
||
|
BN_CTX *ctx = NULL;
|
||
|
BN_ULONG bitst = 0;
|
||
|
unsigned long error = 0;
|
||
|
|
||
|
if (bits < RSA_MIN_MODULUS_BITS) {
|
||
|
ok = 0; /* we set our own err */
|
||
|
RSAerr(RSA_F_RSA_BUILTIN_KEYGEN, RSA_R_KEY_SIZE_TOO_SMALL);
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
if (primes < RSA_DEFAULT_PRIME_NUM || primes > rsa_multip_cap(bits)) {
|
||
|
ok = 0; /* we set our own err */
|
||
|
RSAerr(RSA_F_RSA_BUILTIN_KEYGEN, RSA_R_KEY_PRIME_NUM_INVALID);
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
ctx = BN_CTX_new();
|
||
|
if (ctx == NULL)
|
||
|
goto err;
|
||
|
BN_CTX_start(ctx);
|
||
|
r0 = BN_CTX_get(ctx);
|
||
|
r1 = BN_CTX_get(ctx);
|
||
|
r2 = BN_CTX_get(ctx);
|
||
|
if (r2 == NULL)
|
||
|
goto err;
|
||
|
|
||
|
/* divide bits into 'primes' pieces evenly */
|
||
|
quo = bits / primes;
|
||
|
rmd = bits % primes;
|
||
|
|
||
|
for (i = 0; i < primes; i++)
|
||
|
bitsr[i] = (i < rmd) ? quo + 1 : quo;
|
||
|
|
||
|
/* We need the RSA components non-NULL */
|
||
|
if (!rsa->n && ((rsa->n = BN_new()) == NULL))
|
||
|
goto err;
|
||
|
if (!rsa->d && ((rsa->d = BN_secure_new()) == NULL))
|
||
|
goto err;
|
||
|
if (!rsa->e && ((rsa->e = BN_new()) == NULL))
|
||
|
goto err;
|
||
|
if (!rsa->p && ((rsa->p = BN_secure_new()) == NULL))
|
||
|
goto err;
|
||
|
if (!rsa->q && ((rsa->q = BN_secure_new()) == NULL))
|
||
|
goto err;
|
||
|
if (!rsa->dmp1 && ((rsa->dmp1 = BN_secure_new()) == NULL))
|
||
|
goto err;
|
||
|
if (!rsa->dmq1 && ((rsa->dmq1 = BN_secure_new()) == NULL))
|
||
|
goto err;
|
||
|
if (!rsa->iqmp && ((rsa->iqmp = BN_secure_new()) == NULL))
|
||
|
goto err;
|
||
|
|
||
|
/* initialize multi-prime components */
|
||
|
if (primes > RSA_DEFAULT_PRIME_NUM) {
|
||
|
rsa->version = RSA_ASN1_VERSION_MULTI;
|
||
|
prime_infos = sk_RSA_PRIME_INFO_new_reserve(NULL, primes - 2);
|
||
|
if (prime_infos == NULL)
|
||
|
goto err;
|
||
|
if (rsa->prime_infos != NULL) {
|
||
|
/* could this happen? */
|
||
|
sk_RSA_PRIME_INFO_pop_free(rsa->prime_infos, rsa_multip_info_free);
|
||
|
}
|
||
|
rsa->prime_infos = prime_infos;
|
||
|
|
||
|
/* prime_info from 2 to |primes| -1 */
|
||
|
for (i = 2; i < primes; i++) {
|
||
|
pinfo = rsa_multip_info_new();
|
||
|
if (pinfo == NULL)
|
||
|
goto err;
|
||
|
(void)sk_RSA_PRIME_INFO_push(prime_infos, pinfo);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (BN_copy(rsa->e, e_value) == NULL)
|
||
|
goto err;
|
||
|
|
||
|
/* generate p, q and other primes (if any) */
|
||
|
for (i = 0; i < primes; i++) {
|
||
|
adj = 0;
|
||
|
retries = 0;
|
||
|
|
||
|
if (i == 0) {
|
||
|
prime = rsa->p;
|
||
|
} else if (i == 1) {
|
||
|
prime = rsa->q;
|
||
|
} else {
|
||
|
pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);
|
||
|
prime = pinfo->r;
|
||
|
}
|
||
|
BN_set_flags(prime, BN_FLG_CONSTTIME);
|
||
|
|
||
|
for (;;) {
|
||
|
redo:
|
||
|
if (!BN_generate_prime_ex(prime, bitsr[i] + adj, 0, NULL, NULL, cb))
|
||
|
goto err;
|
||
|
/*
|
||
|
* prime should not be equal to p, q, r_3...
|
||
|
* (those primes prior to this one)
|
||
|
*/
|
||
|
{
|
||
|
int j;
|
||
|
|
||
|
for (j = 0; j < i; j++) {
|
||
|
BIGNUM *prev_prime;
|
||
|
|
||
|
if (j == 0)
|
||
|
prev_prime = rsa->p;
|
||
|
else if (j == 1)
|
||
|
prev_prime = rsa->q;
|
||
|
else
|
||
|
prev_prime = sk_RSA_PRIME_INFO_value(prime_infos,
|
||
|
j - 2)->r;
|
||
|
|
||
|
if (!BN_cmp(prime, prev_prime)) {
|
||
|
goto redo;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if (!BN_sub(r2, prime, BN_value_one()))
|
||
|
goto err;
|
||
|
ERR_set_mark();
|
||
|
BN_set_flags(r2, BN_FLG_CONSTTIME);
|
||
|
if (BN_mod_inverse(r1, r2, rsa->e, ctx) != NULL) {
|
||
|
/* GCD == 1 since inverse exists */
|
||
|
break;
|
||
|
}
|
||
|
error = ERR_peek_last_error();
|
||
|
if (ERR_GET_LIB(error) == ERR_LIB_BN
|
||
|
&& ERR_GET_REASON(error) == BN_R_NO_INVERSE) {
|
||
|
/* GCD != 1 */
|
||
|
ERR_pop_to_mark();
|
||
|
} else {
|
||
|
goto err;
|
||
|
}
|
||
|
if (!BN_GENCB_call(cb, 2, n++))
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
bitse += bitsr[i];
|
||
|
|
||
|
/* calculate n immediately to see if it's sufficient */
|
||
|
if (i == 1) {
|
||
|
/* we get at least 2 primes */
|
||
|
if (!BN_mul(r1, rsa->p, rsa->q, ctx))
|
||
|
goto err;
|
||
|
} else if (i != 0) {
|
||
|
/* modulus n = p * q * r_3 * r_4 ... */
|
||
|
if (!BN_mul(r1, rsa->n, prime, ctx))
|
||
|
goto err;
|
||
|
} else {
|
||
|
/* i == 0, do nothing */
|
||
|
if (!BN_GENCB_call(cb, 3, i))
|
||
|
goto err;
|
||
|
continue;
|
||
|
}
|
||
|
/*
|
||
|
* if |r1|, product of factors so far, is not as long as expected
|
||
|
* (by checking the first 4 bits are less than 0x9 or greater than
|
||
|
* 0xF). If so, re-generate the last prime.
|
||
|
*
|
||
|
* NOTE: This actually can't happen in two-prime case, because of
|
||
|
* the way factors are generated.
|
||
|
*
|
||
|
* Besides, another consideration is, for multi-prime case, even the
|
||
|
* length modulus is as long as expected, the modulus could start at
|
||
|
* 0x8, which could be utilized to distinguish a multi-prime private
|
||
|
* key by using the modulus in a certificate. This is also covered
|
||
|
* by checking the length should not be less than 0x9.
|
||
|
*/
|
||
|
if (!BN_rshift(r2, r1, bitse - 4))
|
||
|
goto err;
|
||
|
bitst = BN_get_word(r2);
|
||
|
|
||
|
if (bitst < 0x9 || bitst > 0xF) {
|
||
|
/*
|
||
|
* For keys with more than 4 primes, we attempt longer factor to
|
||
|
* meet length requirement.
|
||
|
*
|
||
|
* Otherwise, we just re-generate the prime with the same length.
|
||
|
*
|
||
|
* This strategy has the following goals:
|
||
|
*
|
||
|
* 1. 1024-bit factors are effcient when using 3072 and 4096-bit key
|
||
|
* 2. stay the same logic with normal 2-prime key
|
||
|
*/
|
||
|
bitse -= bitsr[i];
|
||
|
if (!BN_GENCB_call(cb, 2, n++))
|
||
|
goto err;
|
||
|
if (primes > 4) {
|
||
|
if (bitst < 0x9)
|
||
|
adj++;
|
||
|
else
|
||
|
adj--;
|
||
|
} else if (retries == 4) {
|
||
|
/*
|
||
|
* re-generate all primes from scratch, mainly used
|
||
|
* in 4 prime case to avoid long loop. Max retry times
|
||
|
* is set to 4.
|
||
|
*/
|
||
|
i = -1;
|
||
|
bitse = 0;
|
||
|
continue;
|
||
|
}
|
||
|
retries++;
|
||
|
goto redo;
|
||
|
}
|
||
|
/* save product of primes for further use, for multi-prime only */
|
||
|
if (i > 1 && BN_copy(pinfo->pp, rsa->n) == NULL)
|
||
|
goto err;
|
||
|
if (BN_copy(rsa->n, r1) == NULL)
|
||
|
goto err;
|
||
|
if (!BN_GENCB_call(cb, 3, i))
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
if (BN_cmp(rsa->p, rsa->q) < 0) {
|
||
|
tmp = rsa->p;
|
||
|
rsa->p = rsa->q;
|
||
|
rsa->q = tmp;
|
||
|
}
|
||
|
|
||
|
/* calculate d */
|
||
|
|
||
|
/* p - 1 */
|
||
|
if (!BN_sub(r1, rsa->p, BN_value_one()))
|
||
|
goto err;
|
||
|
/* q - 1 */
|
||
|
if (!BN_sub(r2, rsa->q, BN_value_one()))
|
||
|
goto err;
|
||
|
/* (p - 1)(q - 1) */
|
||
|
if (!BN_mul(r0, r1, r2, ctx))
|
||
|
goto err;
|
||
|
/* multi-prime */
|
||
|
for (i = 2; i < primes; i++) {
|
||
|
pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);
|
||
|
/* save r_i - 1 to pinfo->d temporarily */
|
||
|
if (!BN_sub(pinfo->d, pinfo->r, BN_value_one()))
|
||
|
goto err;
|
||
|
if (!BN_mul(r0, r0, pinfo->d, ctx))
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
{
|
||
|
BIGNUM *pr0 = BN_new();
|
||
|
|
||
|
if (pr0 == NULL)
|
||
|
goto err;
|
||
|
|
||
|
BN_with_flags(pr0, r0, BN_FLG_CONSTTIME);
|
||
|
if (!BN_mod_inverse(rsa->d, rsa->e, pr0, ctx)) {
|
||
|
BN_free(pr0);
|
||
|
goto err; /* d */
|
||
|
}
|
||
|
/* We MUST free pr0 before any further use of r0 */
|
||
|
BN_free(pr0);
|
||
|
}
|
||
|
|
||
|
{
|
||
|
BIGNUM *d = BN_new();
|
||
|
|
||
|
if (d == NULL)
|
||
|
goto err;
|
||
|
|
||
|
BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME);
|
||
|
|
||
|
/* calculate d mod (p-1) and d mod (q - 1) */
|
||
|
if (!BN_mod(rsa->dmp1, d, r1, ctx)
|
||
|
|| !BN_mod(rsa->dmq1, d, r2, ctx)) {
|
||
|
BN_free(d);
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
/* calculate CRT exponents */
|
||
|
for (i = 2; i < primes; i++) {
|
||
|
pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);
|
||
|
/* pinfo->d == r_i - 1 */
|
||
|
if (!BN_mod(pinfo->d, d, pinfo->d, ctx)) {
|
||
|
BN_free(d);
|
||
|
goto err;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* We MUST free d before any further use of rsa->d */
|
||
|
BN_free(d);
|
||
|
}
|
||
|
|
||
|
{
|
||
|
BIGNUM *p = BN_new();
|
||
|
|
||
|
if (p == NULL)
|
||
|
goto err;
|
||
|
BN_with_flags(p, rsa->p, BN_FLG_CONSTTIME);
|
||
|
|
||
|
/* calculate inverse of q mod p */
|
||
|
if (!BN_mod_inverse(rsa->iqmp, rsa->q, p, ctx)) {
|
||
|
BN_free(p);
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
/* calculate CRT coefficient for other primes */
|
||
|
for (i = 2; i < primes; i++) {
|
||
|
pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);
|
||
|
BN_with_flags(p, pinfo->r, BN_FLG_CONSTTIME);
|
||
|
if (!BN_mod_inverse(pinfo->t, pinfo->pp, p, ctx)) {
|
||
|
BN_free(p);
|
||
|
goto err;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* We MUST free p before any further use of rsa->p */
|
||
|
BN_free(p);
|
||
|
}
|
||
|
|
||
|
ok = 1;
|
||
|
err:
|
||
|
if (ok == -1) {
|
||
|
RSAerr(RSA_F_RSA_BUILTIN_KEYGEN, ERR_LIB_BN);
|
||
|
ok = 0;
|
||
|
}
|
||
|
BN_CTX_end(ctx);
|
||
|
BN_CTX_free(ctx);
|
||
|
return ok;
|
||
|
}
|