ssl_des/lib/openssl/apps/speed.c
2019-04-06 16:42:39 +03:00

3706 lines
120 KiB
C

/*
* Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved.
* Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#undef SECONDS
#define SECONDS 3
#define RSA_SECONDS 10
#define DSA_SECONDS 10
#define ECDSA_SECONDS 10
#define ECDH_SECONDS 10
#define EdDSA_SECONDS 10
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "apps.h"
#include "progs.h"
#include <openssl/crypto.h>
#include <openssl/rand.h>
#include <openssl/err.h>
#include <openssl/evp.h>
#include <openssl/objects.h>
#include <openssl/async.h>
#if !defined(OPENSSL_SYS_MSDOS)
# include OPENSSL_UNISTD
#endif
#if defined(_WIN32)
# include <windows.h>
#endif
#include <openssl/bn.h>
#ifndef OPENSSL_NO_DES
# include <openssl/des.h>
#endif
#include <openssl/aes.h>
#ifndef OPENSSL_NO_CAMELLIA
# include <openssl/camellia.h>
#endif
#ifndef OPENSSL_NO_MD2
# include <openssl/md2.h>
#endif
#ifndef OPENSSL_NO_MDC2
# include <openssl/mdc2.h>
#endif
#ifndef OPENSSL_NO_MD4
# include <openssl/md4.h>
#endif
#ifndef OPENSSL_NO_MD5
# include <openssl/md5.h>
#endif
#include <openssl/hmac.h>
#include <openssl/sha.h>
#ifndef OPENSSL_NO_RMD160
# include <openssl/ripemd.h>
#endif
#ifndef OPENSSL_NO_WHIRLPOOL
# include <openssl/whrlpool.h>
#endif
#ifndef OPENSSL_NO_RC4
# include <openssl/rc4.h>
#endif
#ifndef OPENSSL_NO_RC5
# include <openssl/rc5.h>
#endif
#ifndef OPENSSL_NO_RC2
# include <openssl/rc2.h>
#endif
#ifndef OPENSSL_NO_IDEA
# include <openssl/idea.h>
#endif
#ifndef OPENSSL_NO_SEED
# include <openssl/seed.h>
#endif
#ifndef OPENSSL_NO_BF
# include <openssl/blowfish.h>
#endif
#ifndef OPENSSL_NO_CAST
# include <openssl/cast.h>
#endif
#ifndef OPENSSL_NO_RSA
# include <openssl/rsa.h>
# include "./testrsa.h"
#endif
#include <openssl/x509.h>
#ifndef OPENSSL_NO_DSA
# include <openssl/dsa.h>
# include "./testdsa.h"
#endif
#ifndef OPENSSL_NO_EC
# include <openssl/ec.h>
#endif
#include <openssl/modes.h>
#ifndef HAVE_FORK
# if defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_VXWORKS)
# define HAVE_FORK 0
# else
# define HAVE_FORK 1
# endif
#endif
#if HAVE_FORK
# undef NO_FORK
#else
# define NO_FORK
#endif
#define MAX_MISALIGNMENT 63
#define MAX_ECDH_SIZE 256
#define MISALIGN 64
typedef struct openssl_speed_sec_st {
int sym;
int rsa;
int dsa;
int ecdsa;
int ecdh;
int eddsa;
} openssl_speed_sec_t;
static volatile int run = 0;
static int mr = 0;
static int usertime = 1;
#ifndef OPENSSL_NO_MD2
static int EVP_Digest_MD2_loop(void *args);
#endif
#ifndef OPENSSL_NO_MDC2
static int EVP_Digest_MDC2_loop(void *args);
#endif
#ifndef OPENSSL_NO_MD4
static int EVP_Digest_MD4_loop(void *args);
#endif
#ifndef OPENSSL_NO_MD5
static int MD5_loop(void *args);
static int HMAC_loop(void *args);
#endif
static int SHA1_loop(void *args);
static int SHA256_loop(void *args);
static int SHA512_loop(void *args);
#ifndef OPENSSL_NO_WHIRLPOOL
static int WHIRLPOOL_loop(void *args);
#endif
#ifndef OPENSSL_NO_RMD160
static int EVP_Digest_RMD160_loop(void *args);
#endif
#ifndef OPENSSL_NO_RC4
static int RC4_loop(void *args);
#endif
#ifndef OPENSSL_NO_DES
static int DES_ncbc_encrypt_loop(void *args);
static int DES_ede3_cbc_encrypt_loop(void *args);
#endif
static int AES_cbc_128_encrypt_loop(void *args);
static int AES_cbc_192_encrypt_loop(void *args);
static int AES_ige_128_encrypt_loop(void *args);
static int AES_cbc_256_encrypt_loop(void *args);
static int AES_ige_192_encrypt_loop(void *args);
static int AES_ige_256_encrypt_loop(void *args);
static int CRYPTO_gcm128_aad_loop(void *args);
static int RAND_bytes_loop(void *args);
static int EVP_Update_loop(void *args);
static int EVP_Update_loop_ccm(void *args);
static int EVP_Update_loop_aead(void *args);
static int EVP_Digest_loop(void *args);
#ifndef OPENSSL_NO_RSA
static int RSA_sign_loop(void *args);
static int RSA_verify_loop(void *args);
#endif
#ifndef OPENSSL_NO_DSA
static int DSA_sign_loop(void *args);
static int DSA_verify_loop(void *args);
#endif
#ifndef OPENSSL_NO_EC
static int ECDSA_sign_loop(void *args);
static int ECDSA_verify_loop(void *args);
static int EdDSA_sign_loop(void *args);
static int EdDSA_verify_loop(void *args);
#endif
static double Time_F(int s);
static void print_message(const char *s, long num, int length, int tm);
static void pkey_print_message(const char *str, const char *str2,
long num, unsigned int bits, int sec);
static void print_result(int alg, int run_no, int count, double time_used);
#ifndef NO_FORK
static int do_multi(int multi, int size_num);
#endif
static const int lengths_list[] = {
16, 64, 256, 1024, 8 * 1024, 16 * 1024
};
static const int *lengths = lengths_list;
static const int aead_lengths_list[] = {
2, 31, 136, 1024, 8 * 1024, 16 * 1024
};
#define START 0
#define STOP 1
#ifdef SIGALRM
static void alarmed(int sig)
{
signal(SIGALRM, alarmed);
run = 0;
}
static double Time_F(int s)
{
double ret = app_tminterval(s, usertime);
if (s == STOP)
alarm(0);
return ret;
}
#elif defined(_WIN32)
# define SIGALRM -1
static unsigned int lapse;
static volatile unsigned int schlock;
static void alarm_win32(unsigned int secs)
{
lapse = secs * 1000;
}
# define alarm alarm_win32
static DWORD WINAPI sleepy(VOID * arg)
{
schlock = 1;
Sleep(lapse);
run = 0;
return 0;
}
static double Time_F(int s)
{
double ret;
static HANDLE thr;
if (s == START) {
schlock = 0;
thr = CreateThread(NULL, 4096, sleepy, NULL, 0, NULL);
if (thr == NULL) {
DWORD err = GetLastError();
BIO_printf(bio_err, "unable to CreateThread (%lu)", err);
ExitProcess(err);
}
while (!schlock)
Sleep(0); /* scheduler spinlock */
ret = app_tminterval(s, usertime);
} else {
ret = app_tminterval(s, usertime);
if (run)
TerminateThread(thr, 0);
CloseHandle(thr);
}
return ret;
}
#else
static double Time_F(int s)
{
return app_tminterval(s, usertime);
}
#endif
static void multiblock_speed(const EVP_CIPHER *evp_cipher, int lengths_single,
const openssl_speed_sec_t *seconds);
#define found(value, pairs, result)\
opt_found(value, result, pairs, OSSL_NELEM(pairs))
static int opt_found(const char *name, unsigned int *result,
const OPT_PAIR pairs[], unsigned int nbelem)
{
unsigned int idx;
for (idx = 0; idx < nbelem; ++idx, pairs++)
if (strcmp(name, pairs->name) == 0) {
*result = pairs->retval;
return 1;
}
return 0;
}
typedef enum OPTION_choice {
OPT_ERR = -1, OPT_EOF = 0, OPT_HELP,
OPT_ELAPSED, OPT_EVP, OPT_DECRYPT, OPT_ENGINE, OPT_MULTI,
OPT_MR, OPT_MB, OPT_MISALIGN, OPT_ASYNCJOBS, OPT_R_ENUM,
OPT_PRIMES, OPT_SECONDS, OPT_BYTES, OPT_AEAD
} OPTION_CHOICE;
const OPTIONS speed_options[] = {
{OPT_HELP_STR, 1, '-', "Usage: %s [options] ciphers...\n"},
{OPT_HELP_STR, 1, '-', "Valid options are:\n"},
{"help", OPT_HELP, '-', "Display this summary"},
{"evp", OPT_EVP, 's', "Use EVP-named cipher or digest"},
{"decrypt", OPT_DECRYPT, '-',
"Time decryption instead of encryption (only EVP)"},
{"aead", OPT_AEAD, '-',
"Benchmark EVP-named AEAD cipher in TLS-like sequence"},
{"mb", OPT_MB, '-',
"Enable (tls1>=1) multi-block mode on EVP-named cipher"},
{"mr", OPT_MR, '-', "Produce machine readable output"},
#ifndef NO_FORK
{"multi", OPT_MULTI, 'p', "Run benchmarks in parallel"},
#endif
#ifndef OPENSSL_NO_ASYNC
{"async_jobs", OPT_ASYNCJOBS, 'p',
"Enable async mode and start specified number of jobs"},
#endif
OPT_R_OPTIONS,
#ifndef OPENSSL_NO_ENGINE
{"engine", OPT_ENGINE, 's', "Use engine, possibly a hardware device"},
#endif
{"elapsed", OPT_ELAPSED, '-',
"Use wall-clock time instead of CPU user time as divisor"},
{"primes", OPT_PRIMES, 'p', "Specify number of primes (for RSA only)"},
{"seconds", OPT_SECONDS, 'p',
"Run benchmarks for specified amount of seconds"},
{"bytes", OPT_BYTES, 'p',
"Run [non-PKI] benchmarks on custom-sized buffer"},
{"misalign", OPT_MISALIGN, 'p',
"Use specified offset to mis-align buffers"},
{NULL}
};
#define D_MD2 0
#define D_MDC2 1
#define D_MD4 2
#define D_MD5 3
#define D_HMAC 4
#define D_SHA1 5
#define D_RMD160 6
#define D_RC4 7
#define D_CBC_DES 8
#define D_EDE3_DES 9
#define D_CBC_IDEA 10
#define D_CBC_SEED 11
#define D_CBC_RC2 12
#define D_CBC_RC5 13
#define D_CBC_BF 14
#define D_CBC_CAST 15
#define D_CBC_128_AES 16
#define D_CBC_192_AES 17
#define D_CBC_256_AES 18
#define D_CBC_128_CML 19
#define D_CBC_192_CML 20
#define D_CBC_256_CML 21
#define D_EVP 22
#define D_SHA256 23
#define D_SHA512 24
#define D_WHIRLPOOL 25
#define D_IGE_128_AES 26
#define D_IGE_192_AES 27
#define D_IGE_256_AES 28
#define D_GHASH 29
#define D_RAND 30
/* name of algorithms to test */
static const char *names[] = {
"md2", "mdc2", "md4", "md5", "hmac(md5)", "sha1", "rmd160", "rc4",
"des cbc", "des ede3", "idea cbc", "seed cbc",
"rc2 cbc", "rc5-32/12 cbc", "blowfish cbc", "cast cbc",
"aes-128 cbc", "aes-192 cbc", "aes-256 cbc",
"camellia-128 cbc", "camellia-192 cbc", "camellia-256 cbc",
"evp", "sha256", "sha512", "whirlpool",
"aes-128 ige", "aes-192 ige", "aes-256 ige", "ghash",
"rand"
};
#define ALGOR_NUM OSSL_NELEM(names)
/* list of configured algorithm (remaining) */
static const OPT_PAIR doit_choices[] = {
#ifndef OPENSSL_NO_MD2
{"md2", D_MD2},
#endif
#ifndef OPENSSL_NO_MDC2
{"mdc2", D_MDC2},
#endif
#ifndef OPENSSL_NO_MD4
{"md4", D_MD4},
#endif
#ifndef OPENSSL_NO_MD5
{"md5", D_MD5},
{"hmac", D_HMAC},
#endif
{"sha1", D_SHA1},
{"sha256", D_SHA256},
{"sha512", D_SHA512},
#ifndef OPENSSL_NO_WHIRLPOOL
{"whirlpool", D_WHIRLPOOL},
#endif
#ifndef OPENSSL_NO_RMD160
{"ripemd", D_RMD160},
{"rmd160", D_RMD160},
{"ripemd160", D_RMD160},
#endif
#ifndef OPENSSL_NO_RC4
{"rc4", D_RC4},
#endif
#ifndef OPENSSL_NO_DES
{"des-cbc", D_CBC_DES},
{"des-ede3", D_EDE3_DES},
#endif
{"aes-128-cbc", D_CBC_128_AES},
{"aes-192-cbc", D_CBC_192_AES},
{"aes-256-cbc", D_CBC_256_AES},
{"aes-128-ige", D_IGE_128_AES},
{"aes-192-ige", D_IGE_192_AES},
{"aes-256-ige", D_IGE_256_AES},
#ifndef OPENSSL_NO_RC2
{"rc2-cbc", D_CBC_RC2},
{"rc2", D_CBC_RC2},
#endif
#ifndef OPENSSL_NO_RC5
{"rc5-cbc", D_CBC_RC5},
{"rc5", D_CBC_RC5},
#endif
#ifndef OPENSSL_NO_IDEA
{"idea-cbc", D_CBC_IDEA},
{"idea", D_CBC_IDEA},
#endif
#ifndef OPENSSL_NO_SEED
{"seed-cbc", D_CBC_SEED},
{"seed", D_CBC_SEED},
#endif
#ifndef OPENSSL_NO_BF
{"bf-cbc", D_CBC_BF},
{"blowfish", D_CBC_BF},
{"bf", D_CBC_BF},
#endif
#ifndef OPENSSL_NO_CAST
{"cast-cbc", D_CBC_CAST},
{"cast", D_CBC_CAST},
{"cast5", D_CBC_CAST},
#endif
{"ghash", D_GHASH},
{"rand", D_RAND}
};
static double results[ALGOR_NUM][OSSL_NELEM(lengths_list)];
#ifndef OPENSSL_NO_DSA
# define R_DSA_512 0
# define R_DSA_1024 1
# define R_DSA_2048 2
static const OPT_PAIR dsa_choices[] = {
{"dsa512", R_DSA_512},
{"dsa1024", R_DSA_1024},
{"dsa2048", R_DSA_2048}
};
# define DSA_NUM OSSL_NELEM(dsa_choices)
static double dsa_results[DSA_NUM][2]; /* 2 ops: sign then verify */
#endif /* OPENSSL_NO_DSA */
#define R_RSA_512 0
#define R_RSA_1024 1
#define R_RSA_2048 2
#define R_RSA_3072 3
#define R_RSA_4096 4
#define R_RSA_7680 5
#define R_RSA_15360 6
#ifndef OPENSSL_NO_RSA
static const OPT_PAIR rsa_choices[] = {
{"rsa512", R_RSA_512},
{"rsa1024", R_RSA_1024},
{"rsa2048", R_RSA_2048},
{"rsa3072", R_RSA_3072},
{"rsa4096", R_RSA_4096},
{"rsa7680", R_RSA_7680},
{"rsa15360", R_RSA_15360}
};
# define RSA_NUM OSSL_NELEM(rsa_choices)
static double rsa_results[RSA_NUM][2]; /* 2 ops: sign then verify */
#endif /* OPENSSL_NO_RSA */
enum {
R_EC_P160,
R_EC_P192,
R_EC_P224,
R_EC_P256,
R_EC_P384,
R_EC_P521,
#ifndef OPENSSL_NO_EC2M
R_EC_K163,
R_EC_K233,
R_EC_K283,
R_EC_K409,
R_EC_K571,
R_EC_B163,
R_EC_B233,
R_EC_B283,
R_EC_B409,
R_EC_B571,
#endif
R_EC_BRP256R1,
R_EC_BRP256T1,
R_EC_BRP384R1,
R_EC_BRP384T1,
R_EC_BRP512R1,
R_EC_BRP512T1,
R_EC_X25519,
R_EC_X448
};
#ifndef OPENSSL_NO_EC
static OPT_PAIR ecdsa_choices[] = {
{"ecdsap160", R_EC_P160},
{"ecdsap192", R_EC_P192},
{"ecdsap224", R_EC_P224},
{"ecdsap256", R_EC_P256},
{"ecdsap384", R_EC_P384},
{"ecdsap521", R_EC_P521},
# ifndef OPENSSL_NO_EC2M
{"ecdsak163", R_EC_K163},
{"ecdsak233", R_EC_K233},
{"ecdsak283", R_EC_K283},
{"ecdsak409", R_EC_K409},
{"ecdsak571", R_EC_K571},
{"ecdsab163", R_EC_B163},
{"ecdsab233", R_EC_B233},
{"ecdsab283", R_EC_B283},
{"ecdsab409", R_EC_B409},
{"ecdsab571", R_EC_B571},
# endif
{"ecdsabrp256r1", R_EC_BRP256R1},
{"ecdsabrp256t1", R_EC_BRP256T1},
{"ecdsabrp384r1", R_EC_BRP384R1},
{"ecdsabrp384t1", R_EC_BRP384T1},
{"ecdsabrp512r1", R_EC_BRP512R1},
{"ecdsabrp512t1", R_EC_BRP512T1}
};
# define ECDSA_NUM OSSL_NELEM(ecdsa_choices)
static double ecdsa_results[ECDSA_NUM][2]; /* 2 ops: sign then verify */
static const OPT_PAIR ecdh_choices[] = {
{"ecdhp160", R_EC_P160},
{"ecdhp192", R_EC_P192},
{"ecdhp224", R_EC_P224},
{"ecdhp256", R_EC_P256},
{"ecdhp384", R_EC_P384},
{"ecdhp521", R_EC_P521},
# ifndef OPENSSL_NO_EC2M
{"ecdhk163", R_EC_K163},
{"ecdhk233", R_EC_K233},
{"ecdhk283", R_EC_K283},
{"ecdhk409", R_EC_K409},
{"ecdhk571", R_EC_K571},
{"ecdhb163", R_EC_B163},
{"ecdhb233", R_EC_B233},
{"ecdhb283", R_EC_B283},
{"ecdhb409", R_EC_B409},
{"ecdhb571", R_EC_B571},
# endif
{"ecdhbrp256r1", R_EC_BRP256R1},
{"ecdhbrp256t1", R_EC_BRP256T1},
{"ecdhbrp384r1", R_EC_BRP384R1},
{"ecdhbrp384t1", R_EC_BRP384T1},
{"ecdhbrp512r1", R_EC_BRP512R1},
{"ecdhbrp512t1", R_EC_BRP512T1},
{"ecdhx25519", R_EC_X25519},
{"ecdhx448", R_EC_X448}
};
# define EC_NUM OSSL_NELEM(ecdh_choices)
static double ecdh_results[EC_NUM][1]; /* 1 op: derivation */
#define R_EC_Ed25519 0
#define R_EC_Ed448 1
static OPT_PAIR eddsa_choices[] = {
{"ed25519", R_EC_Ed25519},
{"ed448", R_EC_Ed448}
};
# define EdDSA_NUM OSSL_NELEM(eddsa_choices)
static double eddsa_results[EdDSA_NUM][2]; /* 2 ops: sign then verify */
#endif /* OPENSSL_NO_EC */
#ifndef SIGALRM
# define COND(d) (count < (d))
# define COUNT(d) (d)
#else
# define COND(unused_cond) (run && count<0x7fffffff)
# define COUNT(d) (count)
#endif /* SIGALRM */
typedef struct loopargs_st {
ASYNC_JOB *inprogress_job;
ASYNC_WAIT_CTX *wait_ctx;
unsigned char *buf;
unsigned char *buf2;
unsigned char *buf_malloc;
unsigned char *buf2_malloc;
unsigned char *key;
unsigned int siglen;
size_t sigsize;
#ifndef OPENSSL_NO_RSA
RSA *rsa_key[RSA_NUM];
#endif
#ifndef OPENSSL_NO_DSA
DSA *dsa_key[DSA_NUM];
#endif
#ifndef OPENSSL_NO_EC
EC_KEY *ecdsa[ECDSA_NUM];
EVP_PKEY_CTX *ecdh_ctx[EC_NUM];
EVP_MD_CTX *eddsa_ctx[EdDSA_NUM];
unsigned char *secret_a;
unsigned char *secret_b;
size_t outlen[EC_NUM];
#endif
EVP_CIPHER_CTX *ctx;
HMAC_CTX *hctx;
GCM128_CONTEXT *gcm_ctx;
} loopargs_t;
static int run_benchmark(int async_jobs, int (*loop_function) (void *),
loopargs_t * loopargs);
static unsigned int testnum;
/* Nb of iterations to do per algorithm and key-size */
static long c[ALGOR_NUM][OSSL_NELEM(lengths_list)];
#ifndef OPENSSL_NO_MD2
static int EVP_Digest_MD2_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char md2[MD2_DIGEST_LENGTH];
int count;
for (count = 0; COND(c[D_MD2][testnum]); count++) {
if (!EVP_Digest(buf, (size_t)lengths[testnum], md2, NULL, EVP_md2(),
NULL))
return -1;
}
return count;
}
#endif
#ifndef OPENSSL_NO_MDC2
static int EVP_Digest_MDC2_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char mdc2[MDC2_DIGEST_LENGTH];
int count;
for (count = 0; COND(c[D_MDC2][testnum]); count++) {
if (!EVP_Digest(buf, (size_t)lengths[testnum], mdc2, NULL, EVP_mdc2(),
NULL))
return -1;
}
return count;
}
#endif
#ifndef OPENSSL_NO_MD4
static int EVP_Digest_MD4_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char md4[MD4_DIGEST_LENGTH];
int count;
for (count = 0; COND(c[D_MD4][testnum]); count++) {
if (!EVP_Digest(buf, (size_t)lengths[testnum], md4, NULL, EVP_md4(),
NULL))
return -1;
}
return count;
}
#endif
#ifndef OPENSSL_NO_MD5
static int MD5_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char md5[MD5_DIGEST_LENGTH];
int count;
for (count = 0; COND(c[D_MD5][testnum]); count++)
MD5(buf, lengths[testnum], md5);
return count;
}
static int HMAC_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
HMAC_CTX *hctx = tempargs->hctx;
unsigned char hmac[MD5_DIGEST_LENGTH];
int count;
for (count = 0; COND(c[D_HMAC][testnum]); count++) {
HMAC_Init_ex(hctx, NULL, 0, NULL, NULL);
HMAC_Update(hctx, buf, lengths[testnum]);
HMAC_Final(hctx, hmac, NULL);
}
return count;
}
#endif
static int SHA1_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char sha[SHA_DIGEST_LENGTH];
int count;
for (count = 0; COND(c[D_SHA1][testnum]); count++)
SHA1(buf, lengths[testnum], sha);
return count;
}
static int SHA256_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char sha256[SHA256_DIGEST_LENGTH];
int count;
for (count = 0; COND(c[D_SHA256][testnum]); count++)
SHA256(buf, lengths[testnum], sha256);
return count;
}
static int SHA512_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char sha512[SHA512_DIGEST_LENGTH];
int count;
for (count = 0; COND(c[D_SHA512][testnum]); count++)
SHA512(buf, lengths[testnum], sha512);
return count;
}
#ifndef OPENSSL_NO_WHIRLPOOL
static int WHIRLPOOL_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char whirlpool[WHIRLPOOL_DIGEST_LENGTH];
int count;
for (count = 0; COND(c[D_WHIRLPOOL][testnum]); count++)
WHIRLPOOL(buf, lengths[testnum], whirlpool);
return count;
}
#endif
#ifndef OPENSSL_NO_RMD160
static int EVP_Digest_RMD160_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char rmd160[RIPEMD160_DIGEST_LENGTH];
int count;
for (count = 0; COND(c[D_RMD160][testnum]); count++) {
if (!EVP_Digest(buf, (size_t)lengths[testnum], &(rmd160[0]),
NULL, EVP_ripemd160(), NULL))
return -1;
}
return count;
}
#endif
#ifndef OPENSSL_NO_RC4
static RC4_KEY rc4_ks;
static int RC4_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
int count;
for (count = 0; COND(c[D_RC4][testnum]); count++)
RC4(&rc4_ks, (size_t)lengths[testnum], buf, buf);
return count;
}
#endif
#ifndef OPENSSL_NO_DES
static unsigned char DES_iv[8];
static DES_key_schedule sch;
static DES_key_schedule sch2;
static DES_key_schedule sch3;
static int DES_ncbc_encrypt_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
int count;
for (count = 0; COND(c[D_CBC_DES][testnum]); count++)
DES_ncbc_encrypt(buf, buf, lengths[testnum], &sch,
&DES_iv, DES_ENCRYPT);
return count;
}
static int DES_ede3_cbc_encrypt_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
int count;
for (count = 0; COND(c[D_EDE3_DES][testnum]); count++)
DES_ede3_cbc_encrypt(buf, buf, lengths[testnum],
&sch, &sch2, &sch3, &DES_iv, DES_ENCRYPT);
return count;
}
#endif
#define MAX_BLOCK_SIZE 128
static unsigned char iv[2 * MAX_BLOCK_SIZE / 8];
static AES_KEY aes_ks1, aes_ks2, aes_ks3;
static int AES_cbc_128_encrypt_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
int count;
for (count = 0; COND(c[D_CBC_128_AES][testnum]); count++)
AES_cbc_encrypt(buf, buf,
(size_t)lengths[testnum], &aes_ks1, iv, AES_ENCRYPT);
return count;
}
static int AES_cbc_192_encrypt_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
int count;
for (count = 0; COND(c[D_CBC_192_AES][testnum]); count++)
AES_cbc_encrypt(buf, buf,
(size_t)lengths[testnum], &aes_ks2, iv, AES_ENCRYPT);
return count;
}
static int AES_cbc_256_encrypt_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
int count;
for (count = 0; COND(c[D_CBC_256_AES][testnum]); count++)
AES_cbc_encrypt(buf, buf,
(size_t)lengths[testnum], &aes_ks3, iv, AES_ENCRYPT);
return count;
}
static int AES_ige_128_encrypt_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char *buf2 = tempargs->buf2;
int count;
for (count = 0; COND(c[D_IGE_128_AES][testnum]); count++)
AES_ige_encrypt(buf, buf2,
(size_t)lengths[testnum], &aes_ks1, iv, AES_ENCRYPT);
return count;
}
static int AES_ige_192_encrypt_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char *buf2 = tempargs->buf2;
int count;
for (count = 0; COND(c[D_IGE_192_AES][testnum]); count++)
AES_ige_encrypt(buf, buf2,
(size_t)lengths[testnum], &aes_ks2, iv, AES_ENCRYPT);
return count;
}
static int AES_ige_256_encrypt_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char *buf2 = tempargs->buf2;
int count;
for (count = 0; COND(c[D_IGE_256_AES][testnum]); count++)
AES_ige_encrypt(buf, buf2,
(size_t)lengths[testnum], &aes_ks3, iv, AES_ENCRYPT);
return count;
}
static int CRYPTO_gcm128_aad_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
GCM128_CONTEXT *gcm_ctx = tempargs->gcm_ctx;
int count;
for (count = 0; COND(c[D_GHASH][testnum]); count++)
CRYPTO_gcm128_aad(gcm_ctx, buf, lengths[testnum]);
return count;
}
static int RAND_bytes_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
int count;
for (count = 0; COND(c[D_RAND][testnum]); count++)
RAND_bytes(buf, lengths[testnum]);
return count;
}
static long save_count = 0;
static int decrypt = 0;
static int EVP_Update_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
EVP_CIPHER_CTX *ctx = tempargs->ctx;
int outl, count, rc;
#ifndef SIGALRM
int nb_iter = save_count * 4 * lengths[0] / lengths[testnum];
#endif
if (decrypt) {
for (count = 0; COND(nb_iter); count++) {
rc = EVP_DecryptUpdate(ctx, buf, &outl, buf, lengths[testnum]);
if (rc != 1) {
/* reset iv in case of counter overflow */
EVP_CipherInit_ex(ctx, NULL, NULL, NULL, iv, -1);
}
}
} else {
for (count = 0; COND(nb_iter); count++) {
rc = EVP_EncryptUpdate(ctx, buf, &outl, buf, lengths[testnum]);
if (rc != 1) {
/* reset iv in case of counter overflow */
EVP_CipherInit_ex(ctx, NULL, NULL, NULL, iv, -1);
}
}
}
if (decrypt)
EVP_DecryptFinal_ex(ctx, buf, &outl);
else
EVP_EncryptFinal_ex(ctx, buf, &outl);
return count;
}
/*
* CCM does not support streaming. For the purpose of performance measurement,
* each message is encrypted using the same (key,iv)-pair. Do not use this
* code in your application.
*/
static int EVP_Update_loop_ccm(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
EVP_CIPHER_CTX *ctx = tempargs->ctx;
int outl, count;
unsigned char tag[12];
#ifndef SIGALRM
int nb_iter = save_count * 4 * lengths[0] / lengths[testnum];
#endif
if (decrypt) {
for (count = 0; COND(nb_iter); count++) {
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, sizeof(tag), tag);
/* reset iv */
EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv);
/* counter is reset on every update */
EVP_DecryptUpdate(ctx, buf, &outl, buf, lengths[testnum]);
}
} else {
for (count = 0; COND(nb_iter); count++) {
/* restore iv length field */
EVP_EncryptUpdate(ctx, NULL, &outl, NULL, lengths[testnum]);
/* counter is reset on every update */
EVP_EncryptUpdate(ctx, buf, &outl, buf, lengths[testnum]);
}
}
if (decrypt)
EVP_DecryptFinal_ex(ctx, buf, &outl);
else
EVP_EncryptFinal_ex(ctx, buf, &outl);
return count;
}
/*
* To make AEAD benchmarking more relevant perform TLS-like operations,
* 13-byte AAD followed by payload. But don't use TLS-formatted AAD, as
* payload length is not actually limited by 16KB...
*/
static int EVP_Update_loop_aead(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
EVP_CIPHER_CTX *ctx = tempargs->ctx;
int outl, count;
unsigned char aad[13] = { 0xcc };
unsigned char faketag[16] = { 0xcc };
#ifndef SIGALRM
int nb_iter = save_count * 4 * lengths[0] / lengths[testnum];
#endif
if (decrypt) {
for (count = 0; COND(nb_iter); count++) {
EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv);
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG,
sizeof(faketag), faketag);
EVP_DecryptUpdate(ctx, NULL, &outl, aad, sizeof(aad));
EVP_DecryptUpdate(ctx, buf, &outl, buf, lengths[testnum]);
EVP_DecryptFinal_ex(ctx, buf + outl, &outl);
}
} else {
for (count = 0; COND(nb_iter); count++) {
EVP_EncryptInit_ex(ctx, NULL, NULL, NULL, iv);
EVP_EncryptUpdate(ctx, NULL, &outl, aad, sizeof(aad));
EVP_EncryptUpdate(ctx, buf, &outl, buf, lengths[testnum]);
EVP_EncryptFinal_ex(ctx, buf + outl, &outl);
}
}
return count;
}
static const EVP_MD *evp_md = NULL;
static int EVP_Digest_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char md[EVP_MAX_MD_SIZE];
int count;
#ifndef SIGALRM
int nb_iter = save_count * 4 * lengths[0] / lengths[testnum];
#endif
for (count = 0; COND(nb_iter); count++) {
if (!EVP_Digest(buf, lengths[testnum], md, NULL, evp_md, NULL))
return -1;
}
return count;
}
#ifndef OPENSSL_NO_RSA
static long rsa_c[RSA_NUM][2]; /* # RSA iteration test */
static int RSA_sign_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char *buf2 = tempargs->buf2;
unsigned int *rsa_num = &tempargs->siglen;
RSA **rsa_key = tempargs->rsa_key;
int ret, count;
for (count = 0; COND(rsa_c[testnum][0]); count++) {
ret = RSA_sign(NID_md5_sha1, buf, 36, buf2, rsa_num, rsa_key[testnum]);
if (ret == 0) {
BIO_printf(bio_err, "RSA sign failure\n");
ERR_print_errors(bio_err);
count = -1;
break;
}
}
return count;
}
static int RSA_verify_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char *buf2 = tempargs->buf2;
unsigned int rsa_num = tempargs->siglen;
RSA **rsa_key = tempargs->rsa_key;
int ret, count;
for (count = 0; COND(rsa_c[testnum][1]); count++) {
ret =
RSA_verify(NID_md5_sha1, buf, 36, buf2, rsa_num, rsa_key[testnum]);
if (ret <= 0) {
BIO_printf(bio_err, "RSA verify failure\n");
ERR_print_errors(bio_err);
count = -1;
break;
}
}
return count;
}
#endif
#ifndef OPENSSL_NO_DSA
static long dsa_c[DSA_NUM][2];
static int DSA_sign_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char *buf2 = tempargs->buf2;
DSA **dsa_key = tempargs->dsa_key;
unsigned int *siglen = &tempargs->siglen;
int ret, count;
for (count = 0; COND(dsa_c[testnum][0]); count++) {
ret = DSA_sign(0, buf, 20, buf2, siglen, dsa_key[testnum]);
if (ret == 0) {
BIO_printf(bio_err, "DSA sign failure\n");
ERR_print_errors(bio_err);
count = -1;
break;
}
}
return count;
}
static int DSA_verify_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char *buf2 = tempargs->buf2;
DSA **dsa_key = tempargs->dsa_key;
unsigned int siglen = tempargs->siglen;
int ret, count;
for (count = 0; COND(dsa_c[testnum][1]); count++) {
ret = DSA_verify(0, buf, 20, buf2, siglen, dsa_key[testnum]);
if (ret <= 0) {
BIO_printf(bio_err, "DSA verify failure\n");
ERR_print_errors(bio_err);
count = -1;
break;
}
}
return count;
}
#endif
#ifndef OPENSSL_NO_EC
static long ecdsa_c[ECDSA_NUM][2];
static int ECDSA_sign_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
EC_KEY **ecdsa = tempargs->ecdsa;
unsigned char *ecdsasig = tempargs->buf2;
unsigned int *ecdsasiglen = &tempargs->siglen;
int ret, count;
for (count = 0; COND(ecdsa_c[testnum][0]); count++) {
ret = ECDSA_sign(0, buf, 20, ecdsasig, ecdsasiglen, ecdsa[testnum]);
if (ret == 0) {
BIO_printf(bio_err, "ECDSA sign failure\n");
ERR_print_errors(bio_err);
count = -1;
break;
}
}
return count;
}
static int ECDSA_verify_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
EC_KEY **ecdsa = tempargs->ecdsa;
unsigned char *ecdsasig = tempargs->buf2;
unsigned int ecdsasiglen = tempargs->siglen;
int ret, count;
for (count = 0; COND(ecdsa_c[testnum][1]); count++) {
ret = ECDSA_verify(0, buf, 20, ecdsasig, ecdsasiglen, ecdsa[testnum]);
if (ret != 1) {
BIO_printf(bio_err, "ECDSA verify failure\n");
ERR_print_errors(bio_err);
count = -1;
break;
}
}
return count;
}
/* ******************************************************************** */
static long ecdh_c[EC_NUM][1];
static int ECDH_EVP_derive_key_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
EVP_PKEY_CTX *ctx = tempargs->ecdh_ctx[testnum];
unsigned char *derived_secret = tempargs->secret_a;
int count;
size_t *outlen = &(tempargs->outlen[testnum]);
for (count = 0; COND(ecdh_c[testnum][0]); count++)
EVP_PKEY_derive(ctx, derived_secret, outlen);
return count;
}
static long eddsa_c[EdDSA_NUM][2];
static int EdDSA_sign_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
EVP_MD_CTX **edctx = tempargs->eddsa_ctx;
unsigned char *eddsasig = tempargs->buf2;
size_t *eddsasigsize = &tempargs->sigsize;
int ret, count;
for (count = 0; COND(eddsa_c[testnum][0]); count++) {
ret = EVP_DigestSign(edctx[testnum], eddsasig, eddsasigsize, buf, 20);
if (ret == 0) {
BIO_printf(bio_err, "EdDSA sign failure\n");
ERR_print_errors(bio_err);
count = -1;
break;
}
}
return count;
}
static int EdDSA_verify_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
EVP_MD_CTX **edctx = tempargs->eddsa_ctx;
unsigned char *eddsasig = tempargs->buf2;
size_t eddsasigsize = tempargs->sigsize;
int ret, count;
for (count = 0; COND(eddsa_c[testnum][1]); count++) {
ret = EVP_DigestVerify(edctx[testnum], eddsasig, eddsasigsize, buf, 20);
if (ret != 1) {
BIO_printf(bio_err, "EdDSA verify failure\n");
ERR_print_errors(bio_err);
count = -1;
break;
}
}
return count;
}
#endif /* OPENSSL_NO_EC */
static int run_benchmark(int async_jobs,
int (*loop_function) (void *), loopargs_t * loopargs)
{
int job_op_count = 0;
int total_op_count = 0;
int num_inprogress = 0;
int error = 0, i = 0, ret = 0;
OSSL_ASYNC_FD job_fd = 0;
size_t num_job_fds = 0;
run = 1;
if (async_jobs == 0) {
return loop_function((void *)&loopargs);
}
for (i = 0; i < async_jobs && !error; i++) {
loopargs_t *looparg_item = loopargs + i;
/* Copy pointer content (looparg_t item address) into async context */
ret = ASYNC_start_job(&loopargs[i].inprogress_job, loopargs[i].wait_ctx,
&job_op_count, loop_function,
(void *)&looparg_item, sizeof(looparg_item));
switch (ret) {
case ASYNC_PAUSE:
++num_inprogress;
break;
case ASYNC_FINISH:
if (job_op_count == -1) {
error = 1;
} else {
total_op_count += job_op_count;
}
break;
case ASYNC_NO_JOBS:
case ASYNC_ERR:
BIO_printf(bio_err, "Failure in the job\n");
ERR_print_errors(bio_err);
error = 1;
break;
}
}
while (num_inprogress > 0) {
#if defined(OPENSSL_SYS_WINDOWS)
DWORD avail = 0;
#elif defined(OPENSSL_SYS_UNIX)
int select_result = 0;
OSSL_ASYNC_FD max_fd = 0;
fd_set waitfdset;
FD_ZERO(&waitfdset);
for (i = 0; i < async_jobs && num_inprogress > 0; i++) {
if (loopargs[i].inprogress_job == NULL)
continue;
if (!ASYNC_WAIT_CTX_get_all_fds
(loopargs[i].wait_ctx, NULL, &num_job_fds)
|| num_job_fds > 1) {
BIO_printf(bio_err, "Too many fds in ASYNC_WAIT_CTX\n");
ERR_print_errors(bio_err);
error = 1;
break;
}
ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, &job_fd,
&num_job_fds);
FD_SET(job_fd, &waitfdset);
if (job_fd > max_fd)
max_fd = job_fd;
}
if (max_fd >= (OSSL_ASYNC_FD)FD_SETSIZE) {
BIO_printf(bio_err,
"Error: max_fd (%d) must be smaller than FD_SETSIZE (%d). "
"Decrease the value of async_jobs\n",
max_fd, FD_SETSIZE);
ERR_print_errors(bio_err);
error = 1;
break;
}
select_result = select(max_fd + 1, &waitfdset, NULL, NULL, NULL);
if (select_result == -1 && errno == EINTR)
continue;
if (select_result == -1) {
BIO_printf(bio_err, "Failure in the select\n");
ERR_print_errors(bio_err);
error = 1;
break;
}
if (select_result == 0)
continue;
#endif
for (i = 0; i < async_jobs; i++) {
if (loopargs[i].inprogress_job == NULL)
continue;
if (!ASYNC_WAIT_CTX_get_all_fds
(loopargs[i].wait_ctx, NULL, &num_job_fds)
|| num_job_fds > 1) {
BIO_printf(bio_err, "Too many fds in ASYNC_WAIT_CTX\n");
ERR_print_errors(bio_err);
error = 1;
break;
}
ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, &job_fd,
&num_job_fds);
#if defined(OPENSSL_SYS_UNIX)
if (num_job_fds == 1 && !FD_ISSET(job_fd, &waitfdset))
continue;
#elif defined(OPENSSL_SYS_WINDOWS)
if (num_job_fds == 1
&& !PeekNamedPipe(job_fd, NULL, 0, NULL, &avail, NULL)
&& avail > 0)
continue;
#endif
ret = ASYNC_start_job(&loopargs[i].inprogress_job,
loopargs[i].wait_ctx, &job_op_count,
loop_function, (void *)(loopargs + i),
sizeof(loopargs_t));
switch (ret) {
case ASYNC_PAUSE:
break;
case ASYNC_FINISH:
if (job_op_count == -1) {
error = 1;
} else {
total_op_count += job_op_count;
}
--num_inprogress;
loopargs[i].inprogress_job = NULL;
break;
case ASYNC_NO_JOBS:
case ASYNC_ERR:
--num_inprogress;
loopargs[i].inprogress_job = NULL;
BIO_printf(bio_err, "Failure in the job\n");
ERR_print_errors(bio_err);
error = 1;
break;
}
}
}
return error ? -1 : total_op_count;
}
int speed_main(int argc, char **argv)
{
ENGINE *e = NULL;
loopargs_t *loopargs = NULL;
const char *prog;
const char *engine_id = NULL;
const EVP_CIPHER *evp_cipher = NULL;
double d = 0.0;
OPTION_CHOICE o;
int async_init = 0, multiblock = 0, pr_header = 0;
int doit[ALGOR_NUM] = { 0 };
int ret = 1, misalign = 0, lengths_single = 0, aead = 0;
long count = 0;
unsigned int size_num = OSSL_NELEM(lengths_list);
unsigned int i, k, loop, loopargs_len = 0, async_jobs = 0;
int keylen;
int buflen;
#ifndef NO_FORK
int multi = 0;
#endif
#if !defined(OPENSSL_NO_RSA) || !defined(OPENSSL_NO_DSA) \
|| !defined(OPENSSL_NO_EC)
long rsa_count = 1;
#endif
openssl_speed_sec_t seconds = { SECONDS, RSA_SECONDS, DSA_SECONDS,
ECDSA_SECONDS, ECDH_SECONDS,
EdDSA_SECONDS };
/* What follows are the buffers and key material. */
#ifndef OPENSSL_NO_RC5
RC5_32_KEY rc5_ks;
#endif
#ifndef OPENSSL_NO_RC2
RC2_KEY rc2_ks;
#endif
#ifndef OPENSSL_NO_IDEA
IDEA_KEY_SCHEDULE idea_ks;
#endif
#ifndef OPENSSL_NO_SEED
SEED_KEY_SCHEDULE seed_ks;
#endif
#ifndef OPENSSL_NO_BF
BF_KEY bf_ks;
#endif
#ifndef OPENSSL_NO_CAST
CAST_KEY cast_ks;
#endif
static const unsigned char key16[16] = {
0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12
};
static const unsigned char key24[24] = {
0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34
};
static const unsigned char key32[32] = {
0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34,
0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x56
};
#ifndef OPENSSL_NO_CAMELLIA
static const unsigned char ckey24[24] = {
0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34
};
static const unsigned char ckey32[32] = {
0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34,
0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x56
};
CAMELLIA_KEY camellia_ks1, camellia_ks2, camellia_ks3;
#endif
#ifndef OPENSSL_NO_DES
static DES_cblock key = {
0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0
};
static DES_cblock key2 = {
0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12
};
static DES_cblock key3 = {
0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34
};
#endif
#ifndef OPENSSL_NO_RSA
static const unsigned int rsa_bits[RSA_NUM] = {
512, 1024, 2048, 3072, 4096, 7680, 15360
};
static const unsigned char *rsa_data[RSA_NUM] = {
test512, test1024, test2048, test3072, test4096, test7680, test15360
};
static const int rsa_data_length[RSA_NUM] = {
sizeof(test512), sizeof(test1024),
sizeof(test2048), sizeof(test3072),
sizeof(test4096), sizeof(test7680),
sizeof(test15360)
};
int rsa_doit[RSA_NUM] = { 0 };
int primes = RSA_DEFAULT_PRIME_NUM;
#endif
#ifndef OPENSSL_NO_DSA
static const unsigned int dsa_bits[DSA_NUM] = { 512, 1024, 2048 };
int dsa_doit[DSA_NUM] = { 0 };
#endif
#ifndef OPENSSL_NO_EC
/*
* We only test over the following curves as they are representative, To
* add tests over more curves, simply add the curve NID and curve name to
* the following arrays and increase the |ecdh_choices| list accordingly.
*/
static const struct {
const char *name;
unsigned int nid;
unsigned int bits;
} test_curves[] = {
/* Prime Curves */
{"secp160r1", NID_secp160r1, 160},
{"nistp192", NID_X9_62_prime192v1, 192},
{"nistp224", NID_secp224r1, 224},
{"nistp256", NID_X9_62_prime256v1, 256},
{"nistp384", NID_secp384r1, 384},
{"nistp521", NID_secp521r1, 521},
# ifndef OPENSSL_NO_EC2M
/* Binary Curves */
{"nistk163", NID_sect163k1, 163},
{"nistk233", NID_sect233k1, 233},
{"nistk283", NID_sect283k1, 283},
{"nistk409", NID_sect409k1, 409},
{"nistk571", NID_sect571k1, 571},
{"nistb163", NID_sect163r2, 163},
{"nistb233", NID_sect233r1, 233},
{"nistb283", NID_sect283r1, 283},
{"nistb409", NID_sect409r1, 409},
{"nistb571", NID_sect571r1, 571},
# endif
{"brainpoolP256r1", NID_brainpoolP256r1, 256},
{"brainpoolP256t1", NID_brainpoolP256t1, 256},
{"brainpoolP384r1", NID_brainpoolP384r1, 384},
{"brainpoolP384t1", NID_brainpoolP384t1, 384},
{"brainpoolP512r1", NID_brainpoolP512r1, 512},
{"brainpoolP512t1", NID_brainpoolP512t1, 512},
/* Other and ECDH only ones */
{"X25519", NID_X25519, 253},
{"X448", NID_X448, 448}
};
static const struct {
const char *name;
unsigned int nid;
unsigned int bits;
size_t sigsize;
} test_ed_curves[] = {
/* EdDSA */
{"Ed25519", NID_ED25519, 253, 64},
{"Ed448", NID_ED448, 456, 114}
};
int ecdsa_doit[ECDSA_NUM] = { 0 };
int ecdh_doit[EC_NUM] = { 0 };
int eddsa_doit[EdDSA_NUM] = { 0 };
OPENSSL_assert(OSSL_NELEM(test_curves) >= EC_NUM);
OPENSSL_assert(OSSL_NELEM(test_ed_curves) >= EdDSA_NUM);
#endif /* ndef OPENSSL_NO_EC */
prog = opt_init(argc, argv, speed_options);
while ((o = opt_next()) != OPT_EOF) {
switch (o) {
case OPT_EOF:
case OPT_ERR:
opterr:
BIO_printf(bio_err, "%s: Use -help for summary.\n", prog);
goto end;
case OPT_HELP:
opt_help(speed_options);
ret = 0;
goto end;
case OPT_ELAPSED:
usertime = 0;
break;
case OPT_EVP:
evp_md = NULL;
evp_cipher = EVP_get_cipherbyname(opt_arg());
if (evp_cipher == NULL)
evp_md = EVP_get_digestbyname(opt_arg());
if (evp_cipher == NULL && evp_md == NULL) {
BIO_printf(bio_err,
"%s: %s is an unknown cipher or digest\n",
prog, opt_arg());
goto end;
}
doit[D_EVP] = 1;
break;
case OPT_DECRYPT:
decrypt = 1;
break;
case OPT_ENGINE:
/*
* In a forked execution, an engine might need to be
* initialised by each child process, not by the parent.
* So store the name here and run setup_engine() later on.
*/
engine_id = opt_arg();
break;
case OPT_MULTI:
#ifndef NO_FORK
multi = atoi(opt_arg());
#endif
break;
case OPT_ASYNCJOBS:
#ifndef OPENSSL_NO_ASYNC
async_jobs = atoi(opt_arg());
if (!ASYNC_is_capable()) {
BIO_printf(bio_err,
"%s: async_jobs specified but async not supported\n",
prog);
goto opterr;
}
if (async_jobs > 99999) {
BIO_printf(bio_err, "%s: too many async_jobs\n", prog);
goto opterr;
}
#endif
break;
case OPT_MISALIGN:
if (!opt_int(opt_arg(), &misalign))
goto end;
if (misalign > MISALIGN) {
BIO_printf(bio_err,
"%s: Maximum offset is %d\n", prog, MISALIGN);
goto opterr;
}
break;
case OPT_MR:
mr = 1;
break;
case OPT_MB:
multiblock = 1;
#ifdef OPENSSL_NO_MULTIBLOCK
BIO_printf(bio_err,
"%s: -mb specified but multi-block support is disabled\n",
prog);
goto end;
#endif
break;
case OPT_R_CASES:
if (!opt_rand(o))
goto end;
break;
case OPT_PRIMES:
if (!opt_int(opt_arg(), &primes))
goto end;
break;
case OPT_SECONDS:
seconds.sym = seconds.rsa = seconds.dsa = seconds.ecdsa
= seconds.ecdh = seconds.eddsa = atoi(opt_arg());
break;
case OPT_BYTES:
lengths_single = atoi(opt_arg());
lengths = &lengths_single;
size_num = 1;
break;
case OPT_AEAD:
aead = 1;
break;
}
}
argc = opt_num_rest();
argv = opt_rest();
/* Remaining arguments are algorithms. */
for (; *argv; argv++) {
if (found(*argv, doit_choices, &i)) {
doit[i] = 1;
continue;
}
#ifndef OPENSSL_NO_DES
if (strcmp(*argv, "des") == 0) {
doit[D_CBC_DES] = doit[D_EDE3_DES] = 1;
continue;
}
#endif
if (strcmp(*argv, "sha") == 0) {
doit[D_SHA1] = doit[D_SHA256] = doit[D_SHA512] = 1;
continue;
}
#ifndef OPENSSL_NO_RSA
if (strcmp(*argv, "openssl") == 0)
continue;
if (strcmp(*argv, "rsa") == 0) {
for (loop = 0; loop < OSSL_NELEM(rsa_doit); loop++)
rsa_doit[loop] = 1;
continue;
}
if (found(*argv, rsa_choices, &i)) {
rsa_doit[i] = 1;
continue;
}
#endif
#ifndef OPENSSL_NO_DSA
if (strcmp(*argv, "dsa") == 0) {
dsa_doit[R_DSA_512] = dsa_doit[R_DSA_1024] =
dsa_doit[R_DSA_2048] = 1;
continue;
}
if (found(*argv, dsa_choices, &i)) {
dsa_doit[i] = 2;
continue;
}
#endif
if (strcmp(*argv, "aes") == 0) {
doit[D_CBC_128_AES] = doit[D_CBC_192_AES] = doit[D_CBC_256_AES] = 1;
continue;
}
#ifndef OPENSSL_NO_CAMELLIA
if (strcmp(*argv, "camellia") == 0) {
doit[D_CBC_128_CML] = doit[D_CBC_192_CML] = doit[D_CBC_256_CML] = 1;
continue;
}
#endif
#ifndef OPENSSL_NO_EC
if (strcmp(*argv, "ecdsa") == 0) {
for (loop = 0; loop < OSSL_NELEM(ecdsa_doit); loop++)
ecdsa_doit[loop] = 1;
continue;
}
if (found(*argv, ecdsa_choices, &i)) {
ecdsa_doit[i] = 2;
continue;
}
if (strcmp(*argv, "ecdh") == 0) {
for (loop = 0; loop < OSSL_NELEM(ecdh_doit); loop++)
ecdh_doit[loop] = 1;
continue;
}
if (found(*argv, ecdh_choices, &i)) {
ecdh_doit[i] = 2;
continue;
}
if (strcmp(*argv, "eddsa") == 0) {
for (loop = 0; loop < OSSL_NELEM(eddsa_doit); loop++)
eddsa_doit[loop] = 1;
continue;
}
if (found(*argv, eddsa_choices, &i)) {
eddsa_doit[i] = 2;
continue;
}
#endif
BIO_printf(bio_err, "%s: Unknown algorithm %s\n", prog, *argv);
goto end;
}
/* Sanity checks */
if (aead) {
if (evp_cipher == NULL) {
BIO_printf(bio_err, "-aead can be used only with an AEAD cipher\n");
goto end;
} else if (!(EVP_CIPHER_flags(evp_cipher) &
EVP_CIPH_FLAG_AEAD_CIPHER)) {
BIO_printf(bio_err, "%s is not an AEAD cipher\n",
OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher)));
goto end;
}
}
if (multiblock) {
if (evp_cipher == NULL) {
BIO_printf(bio_err,"-mb can be used only with a multi-block"
" capable cipher\n");
goto end;
} else if (!(EVP_CIPHER_flags(evp_cipher) &
EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK)) {
BIO_printf(bio_err, "%s is not a multi-block capable\n",
OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher)));
goto end;
} else if (async_jobs > 0) {
BIO_printf(bio_err, "Async mode is not supported with -mb");
goto end;
}
}
/* Initialize the job pool if async mode is enabled */
if (async_jobs > 0) {
async_init = ASYNC_init_thread(async_jobs, async_jobs);
if (!async_init) {
BIO_printf(bio_err, "Error creating the ASYNC job pool\n");
goto end;
}
}
loopargs_len = (async_jobs == 0 ? 1 : async_jobs);
loopargs =
app_malloc(loopargs_len * sizeof(loopargs_t), "array of loopargs");
memset(loopargs, 0, loopargs_len * sizeof(loopargs_t));
for (i = 0; i < loopargs_len; i++) {
if (async_jobs > 0) {
loopargs[i].wait_ctx = ASYNC_WAIT_CTX_new();
if (loopargs[i].wait_ctx == NULL) {
BIO_printf(bio_err, "Error creating the ASYNC_WAIT_CTX\n");
goto end;
}
}
buflen = lengths[size_num - 1];
if (buflen < 36) /* size of random vector in RSA bencmark */
buflen = 36;
buflen += MAX_MISALIGNMENT + 1;
loopargs[i].buf_malloc = app_malloc(buflen, "input buffer");
loopargs[i].buf2_malloc = app_malloc(buflen, "input buffer");
memset(loopargs[i].buf_malloc, 0, buflen);
memset(loopargs[i].buf2_malloc, 0, buflen);
/* Align the start of buffers on a 64 byte boundary */
loopargs[i].buf = loopargs[i].buf_malloc + misalign;
loopargs[i].buf2 = loopargs[i].buf2_malloc + misalign;
#ifndef OPENSSL_NO_EC
loopargs[i].secret_a = app_malloc(MAX_ECDH_SIZE, "ECDH secret a");
loopargs[i].secret_b = app_malloc(MAX_ECDH_SIZE, "ECDH secret b");
#endif
}
#ifndef NO_FORK
if (multi && do_multi(multi, size_num))
goto show_res;
#endif
/* Initialize the engine after the fork */
e = setup_engine(engine_id, 0);
/* No parameters; turn on everything. */
if ((argc == 0) && !doit[D_EVP]) {
for (i = 0; i < ALGOR_NUM; i++)
if (i != D_EVP)
doit[i] = 1;
#ifndef OPENSSL_NO_RSA
for (i = 0; i < RSA_NUM; i++)
rsa_doit[i] = 1;
#endif
#ifndef OPENSSL_NO_DSA
for (i = 0; i < DSA_NUM; i++)
dsa_doit[i] = 1;
#endif
#ifndef OPENSSL_NO_EC
for (loop = 0; loop < OSSL_NELEM(ecdsa_doit); loop++)
ecdsa_doit[loop] = 1;
for (loop = 0; loop < OSSL_NELEM(ecdh_doit); loop++)
ecdh_doit[loop] = 1;
for (loop = 0; loop < OSSL_NELEM(eddsa_doit); loop++)
eddsa_doit[loop] = 1;
#endif
}
for (i = 0; i < ALGOR_NUM; i++)
if (doit[i])
pr_header++;
if (usertime == 0 && !mr)
BIO_printf(bio_err,
"You have chosen to measure elapsed time "
"instead of user CPU time.\n");
#ifndef OPENSSL_NO_RSA
for (i = 0; i < loopargs_len; i++) {
if (primes > RSA_DEFAULT_PRIME_NUM) {
/* for multi-prime RSA, skip this */
break;
}
for (k = 0; k < RSA_NUM; k++) {
const unsigned char *p;
p = rsa_data[k];
loopargs[i].rsa_key[k] =
d2i_RSAPrivateKey(NULL, &p, rsa_data_length[k]);
if (loopargs[i].rsa_key[k] == NULL) {
BIO_printf(bio_err,
"internal error loading RSA key number %d\n", k);
goto end;
}
}
}
#endif
#ifndef OPENSSL_NO_DSA
for (i = 0; i < loopargs_len; i++) {
loopargs[i].dsa_key[0] = get_dsa(512);
loopargs[i].dsa_key[1] = get_dsa(1024);
loopargs[i].dsa_key[2] = get_dsa(2048);
}
#endif
#ifndef OPENSSL_NO_DES
DES_set_key_unchecked(&key, &sch);
DES_set_key_unchecked(&key2, &sch2);
DES_set_key_unchecked(&key3, &sch3);
#endif
AES_set_encrypt_key(key16, 128, &aes_ks1);
AES_set_encrypt_key(key24, 192, &aes_ks2);
AES_set_encrypt_key(key32, 256, &aes_ks3);
#ifndef OPENSSL_NO_CAMELLIA
Camellia_set_key(key16, 128, &camellia_ks1);
Camellia_set_key(ckey24, 192, &camellia_ks2);
Camellia_set_key(ckey32, 256, &camellia_ks3);
#endif
#ifndef OPENSSL_NO_IDEA
IDEA_set_encrypt_key(key16, &idea_ks);
#endif
#ifndef OPENSSL_NO_SEED
SEED_set_key(key16, &seed_ks);
#endif
#ifndef OPENSSL_NO_RC4
RC4_set_key(&rc4_ks, 16, key16);
#endif
#ifndef OPENSSL_NO_RC2
RC2_set_key(&rc2_ks, 16, key16, 128);
#endif
#ifndef OPENSSL_NO_RC5
RC5_32_set_key(&rc5_ks, 16, key16, 12);
#endif
#ifndef OPENSSL_NO_BF
BF_set_key(&bf_ks, 16, key16);
#endif
#ifndef OPENSSL_NO_CAST
CAST_set_key(&cast_ks, 16, key16);
#endif
#ifndef SIGALRM
# ifndef OPENSSL_NO_DES
BIO_printf(bio_err, "First we calculate the approximate speed ...\n");
count = 10;
do {
long it;
count *= 2;
Time_F(START);
for (it = count; it; it--)
DES_ecb_encrypt((DES_cblock *)loopargs[0].buf,
(DES_cblock *)loopargs[0].buf, &sch, DES_ENCRYPT);
d = Time_F(STOP);
} while (d < 3);
save_count = count;
c[D_MD2][0] = count / 10;
c[D_MDC2][0] = count / 10;
c[D_MD4][0] = count;
c[D_MD5][0] = count;
c[D_HMAC][0] = count;
c[D_SHA1][0] = count;
c[D_RMD160][0] = count;
c[D_RC4][0] = count * 5;
c[D_CBC_DES][0] = count;
c[D_EDE3_DES][0] = count / 3;
c[D_CBC_IDEA][0] = count;
c[D_CBC_SEED][0] = count;
c[D_CBC_RC2][0] = count;
c[D_CBC_RC5][0] = count;
c[D_CBC_BF][0] = count;
c[D_CBC_CAST][0] = count;
c[D_CBC_128_AES][0] = count;
c[D_CBC_192_AES][0] = count;
c[D_CBC_256_AES][0] = count;
c[D_CBC_128_CML][0] = count;
c[D_CBC_192_CML][0] = count;
c[D_CBC_256_CML][0] = count;
c[D_SHA256][0] = count;
c[D_SHA512][0] = count;
c[D_WHIRLPOOL][0] = count;
c[D_IGE_128_AES][0] = count;
c[D_IGE_192_AES][0] = count;
c[D_IGE_256_AES][0] = count;
c[D_GHASH][0] = count;
c[D_RAND][0] = count;
for (i = 1; i < size_num; i++) {
long l0, l1;
l0 = (long)lengths[0];
l1 = (long)lengths[i];
c[D_MD2][i] = c[D_MD2][0] * 4 * l0 / l1;
c[D_MDC2][i] = c[D_MDC2][0] * 4 * l0 / l1;
c[D_MD4][i] = c[D_MD4][0] * 4 * l0 / l1;
c[D_MD5][i] = c[D_MD5][0] * 4 * l0 / l1;
c[D_HMAC][i] = c[D_HMAC][0] * 4 * l0 / l1;
c[D_SHA1][i] = c[D_SHA1][0] * 4 * l0 / l1;
c[D_RMD160][i] = c[D_RMD160][0] * 4 * l0 / l1;
c[D_SHA256][i] = c[D_SHA256][0] * 4 * l0 / l1;
c[D_SHA512][i] = c[D_SHA512][0] * 4 * l0 / l1;
c[D_WHIRLPOOL][i] = c[D_WHIRLPOOL][0] * 4 * l0 / l1;
c[D_GHASH][i] = c[D_GHASH][0] * 4 * l0 / l1;
c[D_RAND][i] = c[D_RAND][0] * 4 * l0 / l1;
l0 = (long)lengths[i - 1];
c[D_RC4][i] = c[D_RC4][i - 1] * l0 / l1;
c[D_CBC_DES][i] = c[D_CBC_DES][i - 1] * l0 / l1;
c[D_EDE3_DES][i] = c[D_EDE3_DES][i - 1] * l0 / l1;
c[D_CBC_IDEA][i] = c[D_CBC_IDEA][i - 1] * l0 / l1;
c[D_CBC_SEED][i] = c[D_CBC_SEED][i - 1] * l0 / l1;
c[D_CBC_RC2][i] = c[D_CBC_RC2][i - 1] * l0 / l1;
c[D_CBC_RC5][i] = c[D_CBC_RC5][i - 1] * l0 / l1;
c[D_CBC_BF][i] = c[D_CBC_BF][i - 1] * l0 / l1;
c[D_CBC_CAST][i] = c[D_CBC_CAST][i - 1] * l0 / l1;
c[D_CBC_128_AES][i] = c[D_CBC_128_AES][i - 1] * l0 / l1;
c[D_CBC_192_AES][i] = c[D_CBC_192_AES][i - 1] * l0 / l1;
c[D_CBC_256_AES][i] = c[D_CBC_256_AES][i - 1] * l0 / l1;
c[D_CBC_128_CML][i] = c[D_CBC_128_CML][i - 1] * l0 / l1;
c[D_CBC_192_CML][i] = c[D_CBC_192_CML][i - 1] * l0 / l1;
c[D_CBC_256_CML][i] = c[D_CBC_256_CML][i - 1] * l0 / l1;
c[D_IGE_128_AES][i] = c[D_IGE_128_AES][i - 1] * l0 / l1;
c[D_IGE_192_AES][i] = c[D_IGE_192_AES][i - 1] * l0 / l1;
c[D_IGE_256_AES][i] = c[D_IGE_256_AES][i - 1] * l0 / l1;
}
# ifndef OPENSSL_NO_RSA
rsa_c[R_RSA_512][0] = count / 2000;
rsa_c[R_RSA_512][1] = count / 400;
for (i = 1; i < RSA_NUM; i++) {
rsa_c[i][0] = rsa_c[i - 1][0] / 8;
rsa_c[i][1] = rsa_c[i - 1][1] / 4;
if (rsa_doit[i] <= 1 && rsa_c[i][0] == 0)
rsa_doit[i] = 0;
else {
if (rsa_c[i][0] == 0) {
rsa_c[i][0] = 1; /* Set minimum iteration Nb to 1. */
rsa_c[i][1] = 20;
}
}
}
# endif
# ifndef OPENSSL_NO_DSA
dsa_c[R_DSA_512][0] = count / 1000;
dsa_c[R_DSA_512][1] = count / 1000 / 2;
for (i = 1; i < DSA_NUM; i++) {
dsa_c[i][0] = dsa_c[i - 1][0] / 4;
dsa_c[i][1] = dsa_c[i - 1][1] / 4;
if (dsa_doit[i] <= 1 && dsa_c[i][0] == 0)
dsa_doit[i] = 0;
else {
if (dsa_c[i][0] == 0) {
dsa_c[i][0] = 1; /* Set minimum iteration Nb to 1. */
dsa_c[i][1] = 1;
}
}
}
# endif
# ifndef OPENSSL_NO_EC
ecdsa_c[R_EC_P160][0] = count / 1000;
ecdsa_c[R_EC_P160][1] = count / 1000 / 2;
for (i = R_EC_P192; i <= R_EC_P521; i++) {
ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2;
ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2;
if (ecdsa_doit[i] <= 1 && ecdsa_c[i][0] == 0)
ecdsa_doit[i] = 0;
else {
if (ecdsa_c[i][0] == 0) {
ecdsa_c[i][0] = 1;
ecdsa_c[i][1] = 1;
}
}
}
# ifndef OPENSSL_NO_EC2M
ecdsa_c[R_EC_K163][0] = count / 1000;
ecdsa_c[R_EC_K163][1] = count / 1000 / 2;
for (i = R_EC_K233; i <= R_EC_K571; i++) {
ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2;
ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2;
if (ecdsa_doit[i] <= 1 && ecdsa_c[i][0] == 0)
ecdsa_doit[i] = 0;
else {
if (ecdsa_c[i][0] == 0) {
ecdsa_c[i][0] = 1;
ecdsa_c[i][1] = 1;
}
}
}
ecdsa_c[R_EC_B163][0] = count / 1000;
ecdsa_c[R_EC_B163][1] = count / 1000 / 2;
for (i = R_EC_B233; i <= R_EC_B571; i++) {
ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2;
ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2;
if (ecdsa_doit[i] <= 1 && ecdsa_c[i][0] == 0)
ecdsa_doit[i] = 0;
else {
if (ecdsa_c[i][0] == 0) {
ecdsa_c[i][0] = 1;
ecdsa_c[i][1] = 1;
}
}
}
# endif
ecdh_c[R_EC_P160][0] = count / 1000;
for (i = R_EC_P192; i <= R_EC_P521; i++) {
ecdh_c[i][0] = ecdh_c[i - 1][0] / 2;
if (ecdh_doit[i] <= 1 && ecdh_c[i][0] == 0)
ecdh_doit[i] = 0;
else {
if (ecdh_c[i][0] == 0) {
ecdh_c[i][0] = 1;
}
}
}
# ifndef OPENSSL_NO_EC2M
ecdh_c[R_EC_K163][0] = count / 1000;
for (i = R_EC_K233; i <= R_EC_K571; i++) {
ecdh_c[i][0] = ecdh_c[i - 1][0] / 2;
if (ecdh_doit[i] <= 1 && ecdh_c[i][0] == 0)
ecdh_doit[i] = 0;
else {
if (ecdh_c[i][0] == 0) {
ecdh_c[i][0] = 1;
}
}
}
ecdh_c[R_EC_B163][0] = count / 1000;
for (i = R_EC_B233; i <= R_EC_B571; i++) {
ecdh_c[i][0] = ecdh_c[i - 1][0] / 2;
if (ecdh_doit[i] <= 1 && ecdh_c[i][0] == 0)
ecdh_doit[i] = 0;
else {
if (ecdh_c[i][0] == 0) {
ecdh_c[i][0] = 1;
}
}
}
# endif
/* repeated code good to factorize */
ecdh_c[R_EC_BRP256R1][0] = count / 1000;
for (i = R_EC_BRP384R1; i <= R_EC_BRP512R1; i += 2) {
ecdh_c[i][0] = ecdh_c[i - 2][0] / 2;
if (ecdh_doit[i] <= 1 && ecdh_c[i][0] == 0)
ecdh_doit[i] = 0;
else {
if (ecdh_c[i][0] == 0) {
ecdh_c[i][0] = 1;
}
}
}
ecdh_c[R_EC_BRP256T1][0] = count / 1000;
for (i = R_EC_BRP384T1; i <= R_EC_BRP512T1; i += 2) {
ecdh_c[i][0] = ecdh_c[i - 2][0] / 2;
if (ecdh_doit[i] <= 1 && ecdh_c[i][0] == 0)
ecdh_doit[i] = 0;
else {
if (ecdh_c[i][0] == 0) {
ecdh_c[i][0] = 1;
}
}
}
/* default iteration count for the last two EC Curves */
ecdh_c[R_EC_X25519][0] = count / 1800;
ecdh_c[R_EC_X448][0] = count / 7200;
eddsa_c[R_EC_Ed25519][0] = count / 1800;
eddsa_c[R_EC_Ed448][0] = count / 7200;
# endif
# else
/* not worth fixing */
# error "You cannot disable DES on systems without SIGALRM."
# endif /* OPENSSL_NO_DES */
#elif SIGALRM > 0
signal(SIGALRM, alarmed);
#endif /* SIGALRM */
#ifndef OPENSSL_NO_MD2
if (doit[D_MD2]) {
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_MD2], c[D_MD2][testnum], lengths[testnum],
seconds.sym);
Time_F(START);
count = run_benchmark(async_jobs, EVP_Digest_MD2_loop, loopargs);
d = Time_F(STOP);
print_result(D_MD2, testnum, count, d);
}
}
#endif
#ifndef OPENSSL_NO_MDC2
if (doit[D_MDC2]) {
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_MDC2], c[D_MDC2][testnum], lengths[testnum],
seconds.sym);
Time_F(START);
count = run_benchmark(async_jobs, EVP_Digest_MDC2_loop, loopargs);
d = Time_F(STOP);
print_result(D_MDC2, testnum, count, d);
}
}
#endif
#ifndef OPENSSL_NO_MD4
if (doit[D_MD4]) {
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_MD4], c[D_MD4][testnum], lengths[testnum],
seconds.sym);
Time_F(START);
count = run_benchmark(async_jobs, EVP_Digest_MD4_loop, loopargs);
d = Time_F(STOP);
print_result(D_MD4, testnum, count, d);
}
}
#endif
#ifndef OPENSSL_NO_MD5
if (doit[D_MD5]) {
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_MD5], c[D_MD5][testnum], lengths[testnum],
seconds.sym);
Time_F(START);
count = run_benchmark(async_jobs, MD5_loop, loopargs);
d = Time_F(STOP);
print_result(D_MD5, testnum, count, d);
}
}
if (doit[D_HMAC]) {
static const char hmac_key[] = "This is a key...";
int len = strlen(hmac_key);
for (i = 0; i < loopargs_len; i++) {
loopargs[i].hctx = HMAC_CTX_new();
if (loopargs[i].hctx == NULL) {
BIO_printf(bio_err, "HMAC malloc failure, exiting...");
exit(1);
}
HMAC_Init_ex(loopargs[i].hctx, hmac_key, len, EVP_md5(), NULL);
}
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_HMAC], c[D_HMAC][testnum], lengths[testnum],
seconds.sym);
Time_F(START);
count = run_benchmark(async_jobs, HMAC_loop, loopargs);
d = Time_F(STOP);
print_result(D_HMAC, testnum, count, d);
}
for (i = 0; i < loopargs_len; i++) {
HMAC_CTX_free(loopargs[i].hctx);
}
}
#endif
if (doit[D_SHA1]) {
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_SHA1], c[D_SHA1][testnum], lengths[testnum],
seconds.sym);
Time_F(START);
count = run_benchmark(async_jobs, SHA1_loop, loopargs);
d = Time_F(STOP);
print_result(D_SHA1, testnum, count, d);
}
}
if (doit[D_SHA256]) {
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_SHA256], c[D_SHA256][testnum],
lengths[testnum], seconds.sym);
Time_F(START);
count = run_benchmark(async_jobs, SHA256_loop, loopargs);
d = Time_F(STOP);
print_result(D_SHA256, testnum, count, d);
}
}
if (doit[D_SHA512]) {
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_SHA512], c[D_SHA512][testnum],
lengths[testnum], seconds.sym);
Time_F(START);
count = run_benchmark(async_jobs, SHA512_loop, loopargs);
d = Time_F(STOP);
print_result(D_SHA512, testnum, count, d);
}
}
#ifndef OPENSSL_NO_WHIRLPOOL
if (doit[D_WHIRLPOOL]) {
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_WHIRLPOOL], c[D_WHIRLPOOL][testnum],
lengths[testnum], seconds.sym);
Time_F(START);
count = run_benchmark(async_jobs, WHIRLPOOL_loop, loopargs);
d = Time_F(STOP);
print_result(D_WHIRLPOOL, testnum, count, d);
}
}
#endif
#ifndef OPENSSL_NO_RMD160
if (doit[D_RMD160]) {
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_RMD160], c[D_RMD160][testnum],
lengths[testnum], seconds.sym);
Time_F(START);
count = run_benchmark(async_jobs, EVP_Digest_RMD160_loop, loopargs);
d = Time_F(STOP);
print_result(D_RMD160, testnum, count, d);
}
}
#endif
#ifndef OPENSSL_NO_RC4
if (doit[D_RC4]) {
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_RC4], c[D_RC4][testnum], lengths[testnum],
seconds.sym);
Time_F(START);
count = run_benchmark(async_jobs, RC4_loop, loopargs);
d = Time_F(STOP);
print_result(D_RC4, testnum, count, d);
}
}
#endif
#ifndef OPENSSL_NO_DES
if (doit[D_CBC_DES]) {
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_CBC_DES], c[D_CBC_DES][testnum],
lengths[testnum], seconds.sym);
Time_F(START);
count = run_benchmark(async_jobs, DES_ncbc_encrypt_loop, loopargs);
d = Time_F(STOP);
print_result(D_CBC_DES, testnum, count, d);
}
}
if (doit[D_EDE3_DES]) {
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_EDE3_DES], c[D_EDE3_DES][testnum],
lengths[testnum], seconds.sym);
Time_F(START);
count =
run_benchmark(async_jobs, DES_ede3_cbc_encrypt_loop, loopargs);
d = Time_F(STOP);
print_result(D_EDE3_DES, testnum, count, d);
}
}
#endif
if (doit[D_CBC_128_AES]) {
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_CBC_128_AES], c[D_CBC_128_AES][testnum],
lengths[testnum], seconds.sym);
Time_F(START);
count =
run_benchmark(async_jobs, AES_cbc_128_encrypt_loop, loopargs);
d = Time_F(STOP);
print_result(D_CBC_128_AES, testnum, count, d);
}
}
if (doit[D_CBC_192_AES]) {
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_CBC_192_AES], c[D_CBC_192_AES][testnum],
lengths[testnum], seconds.sym);
Time_F(START);
count =
run_benchmark(async_jobs, AES_cbc_192_encrypt_loop, loopargs);
d = Time_F(STOP);
print_result(D_CBC_192_AES, testnum, count, d);
}
}
if (doit[D_CBC_256_AES]) {
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_CBC_256_AES], c[D_CBC_256_AES][testnum],
lengths[testnum], seconds.sym);
Time_F(START);
count =
run_benchmark(async_jobs, AES_cbc_256_encrypt_loop, loopargs);
d = Time_F(STOP);
print_result(D_CBC_256_AES, testnum, count, d);
}
}
if (doit[D_IGE_128_AES]) {
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_IGE_128_AES], c[D_IGE_128_AES][testnum],
lengths[testnum], seconds.sym);
Time_F(START);
count =
run_benchmark(async_jobs, AES_ige_128_encrypt_loop, loopargs);
d = Time_F(STOP);
print_result(D_IGE_128_AES, testnum, count, d);
}
}
if (doit[D_IGE_192_AES]) {
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_IGE_192_AES], c[D_IGE_192_AES][testnum],
lengths[testnum], seconds.sym);
Time_F(START);
count =
run_benchmark(async_jobs, AES_ige_192_encrypt_loop, loopargs);
d = Time_F(STOP);
print_result(D_IGE_192_AES, testnum, count, d);
}
}
if (doit[D_IGE_256_AES]) {
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_IGE_256_AES], c[D_IGE_256_AES][testnum],
lengths[testnum], seconds.sym);
Time_F(START);
count =
run_benchmark(async_jobs, AES_ige_256_encrypt_loop, loopargs);
d = Time_F(STOP);
print_result(D_IGE_256_AES, testnum, count, d);
}
}
if (doit[D_GHASH]) {
for (i = 0; i < loopargs_len; i++) {
loopargs[i].gcm_ctx =
CRYPTO_gcm128_new(&aes_ks1, (block128_f) AES_encrypt);
CRYPTO_gcm128_setiv(loopargs[i].gcm_ctx,
(unsigned char *)"0123456789ab", 12);
}
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_GHASH], c[D_GHASH][testnum],
lengths[testnum], seconds.sym);
Time_F(START);
count = run_benchmark(async_jobs, CRYPTO_gcm128_aad_loop, loopargs);
d = Time_F(STOP);
print_result(D_GHASH, testnum, count, d);
}
for (i = 0; i < loopargs_len; i++)
CRYPTO_gcm128_release(loopargs[i].gcm_ctx);
}
#ifndef OPENSSL_NO_CAMELLIA
if (doit[D_CBC_128_CML]) {
if (async_jobs > 0) {
BIO_printf(bio_err, "Async mode is not supported with %s\n",
names[D_CBC_128_CML]);
doit[D_CBC_128_CML] = 0;
}
for (testnum = 0; testnum < size_num && async_init == 0; testnum++) {
print_message(names[D_CBC_128_CML], c[D_CBC_128_CML][testnum],
lengths[testnum], seconds.sym);
Time_F(START);
for (count = 0, run = 1; COND(c[D_CBC_128_CML][testnum]); count++)
Camellia_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
(size_t)lengths[testnum], &camellia_ks1,
iv, CAMELLIA_ENCRYPT);
d = Time_F(STOP);
print_result(D_CBC_128_CML, testnum, count, d);
}
}
if (doit[D_CBC_192_CML]) {
if (async_jobs > 0) {
BIO_printf(bio_err, "Async mode is not supported with %s\n",
names[D_CBC_192_CML]);
doit[D_CBC_192_CML] = 0;
}
for (testnum = 0; testnum < size_num && async_init == 0; testnum++) {
print_message(names[D_CBC_192_CML], c[D_CBC_192_CML][testnum],
lengths[testnum], seconds.sym);
if (async_jobs > 0) {
BIO_printf(bio_err, "Async mode is not supported, exiting...");
exit(1);
}
Time_F(START);
for (count = 0, run = 1; COND(c[D_CBC_192_CML][testnum]); count++)
Camellia_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
(size_t)lengths[testnum], &camellia_ks2,
iv, CAMELLIA_ENCRYPT);
d = Time_F(STOP);
print_result(D_CBC_192_CML, testnum, count, d);
}
}
if (doit[D_CBC_256_CML]) {
if (async_jobs > 0) {
BIO_printf(bio_err, "Async mode is not supported with %s\n",
names[D_CBC_256_CML]);
doit[D_CBC_256_CML] = 0;
}
for (testnum = 0; testnum < size_num && async_init == 0; testnum++) {
print_message(names[D_CBC_256_CML], c[D_CBC_256_CML][testnum],
lengths[testnum], seconds.sym);
Time_F(START);
for (count = 0, run = 1; COND(c[D_CBC_256_CML][testnum]); count++)
Camellia_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
(size_t)lengths[testnum], &camellia_ks3,
iv, CAMELLIA_ENCRYPT);
d = Time_F(STOP);
print_result(D_CBC_256_CML, testnum, count, d);
}
}
#endif
#ifndef OPENSSL_NO_IDEA
if (doit[D_CBC_IDEA]) {
if (async_jobs > 0) {
BIO_printf(bio_err, "Async mode is not supported with %s\n",
names[D_CBC_IDEA]);
doit[D_CBC_IDEA] = 0;
}
for (testnum = 0; testnum < size_num && async_init == 0; testnum++) {
print_message(names[D_CBC_IDEA], c[D_CBC_IDEA][testnum],
lengths[testnum], seconds.sym);
Time_F(START);
for (count = 0, run = 1; COND(c[D_CBC_IDEA][testnum]); count++)
IDEA_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
(size_t)lengths[testnum], &idea_ks,
iv, IDEA_ENCRYPT);
d = Time_F(STOP);
print_result(D_CBC_IDEA, testnum, count, d);
}
}
#endif
#ifndef OPENSSL_NO_SEED
if (doit[D_CBC_SEED]) {
if (async_jobs > 0) {
BIO_printf(bio_err, "Async mode is not supported with %s\n",
names[D_CBC_SEED]);
doit[D_CBC_SEED] = 0;
}
for (testnum = 0; testnum < size_num && async_init == 0; testnum++) {
print_message(names[D_CBC_SEED], c[D_CBC_SEED][testnum],
lengths[testnum], seconds.sym);
Time_F(START);
for (count = 0, run = 1; COND(c[D_CBC_SEED][testnum]); count++)
SEED_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
(size_t)lengths[testnum], &seed_ks, iv, 1);
d = Time_F(STOP);
print_result(D_CBC_SEED, testnum, count, d);
}
}
#endif
#ifndef OPENSSL_NO_RC2
if (doit[D_CBC_RC2]) {
if (async_jobs > 0) {
BIO_printf(bio_err, "Async mode is not supported with %s\n",
names[D_CBC_RC2]);
doit[D_CBC_RC2] = 0;
}
for (testnum = 0; testnum < size_num && async_init == 0; testnum++) {
print_message(names[D_CBC_RC2], c[D_CBC_RC2][testnum],
lengths[testnum], seconds.sym);
if (async_jobs > 0) {
BIO_printf(bio_err, "Async mode is not supported, exiting...");
exit(1);
}
Time_F(START);
for (count = 0, run = 1; COND(c[D_CBC_RC2][testnum]); count++)
RC2_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
(size_t)lengths[testnum], &rc2_ks,
iv, RC2_ENCRYPT);
d = Time_F(STOP);
print_result(D_CBC_RC2, testnum, count, d);
}
}
#endif
#ifndef OPENSSL_NO_RC5
if (doit[D_CBC_RC5]) {
if (async_jobs > 0) {
BIO_printf(bio_err, "Async mode is not supported with %s\n",
names[D_CBC_RC5]);
doit[D_CBC_RC5] = 0;
}
for (testnum = 0; testnum < size_num && async_init == 0; testnum++) {
print_message(names[D_CBC_RC5], c[D_CBC_RC5][testnum],
lengths[testnum], seconds.sym);
if (async_jobs > 0) {
BIO_printf(bio_err, "Async mode is not supported, exiting...");
exit(1);
}
Time_F(START);
for (count = 0, run = 1; COND(c[D_CBC_RC5][testnum]); count++)
RC5_32_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
(size_t)lengths[testnum], &rc5_ks,
iv, RC5_ENCRYPT);
d = Time_F(STOP);
print_result(D_CBC_RC5, testnum, count, d);
}
}
#endif
#ifndef OPENSSL_NO_BF
if (doit[D_CBC_BF]) {
if (async_jobs > 0) {
BIO_printf(bio_err, "Async mode is not supported with %s\n",
names[D_CBC_BF]);
doit[D_CBC_BF] = 0;
}
for (testnum = 0; testnum < size_num && async_init == 0; testnum++) {
print_message(names[D_CBC_BF], c[D_CBC_BF][testnum],
lengths[testnum], seconds.sym);
Time_F(START);
for (count = 0, run = 1; COND(c[D_CBC_BF][testnum]); count++)
BF_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
(size_t)lengths[testnum], &bf_ks,
iv, BF_ENCRYPT);
d = Time_F(STOP);
print_result(D_CBC_BF, testnum, count, d);
}
}
#endif
#ifndef OPENSSL_NO_CAST
if (doit[D_CBC_CAST]) {
if (async_jobs > 0) {
BIO_printf(bio_err, "Async mode is not supported with %s\n",
names[D_CBC_CAST]);
doit[D_CBC_CAST] = 0;
}
for (testnum = 0; testnum < size_num && async_init == 0; testnum++) {
print_message(names[D_CBC_CAST], c[D_CBC_CAST][testnum],
lengths[testnum], seconds.sym);
Time_F(START);
for (count = 0, run = 1; COND(c[D_CBC_CAST][testnum]); count++)
CAST_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
(size_t)lengths[testnum], &cast_ks,
iv, CAST_ENCRYPT);
d = Time_F(STOP);
print_result(D_CBC_CAST, testnum, count, d);
}
}
#endif
if (doit[D_RAND]) {
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_RAND], c[D_RAND][testnum], lengths[testnum],
seconds.sym);
Time_F(START);
count = run_benchmark(async_jobs, RAND_bytes_loop, loopargs);
d = Time_F(STOP);
print_result(D_RAND, testnum, count, d);
}
}
if (doit[D_EVP]) {
if (evp_cipher != NULL) {
int (*loopfunc)(void *args) = EVP_Update_loop;
if (multiblock && (EVP_CIPHER_flags(evp_cipher) &
EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK)) {
multiblock_speed(evp_cipher, lengths_single, &seconds);
ret = 0;
goto end;
}
names[D_EVP] = OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher));
if (EVP_CIPHER_mode(evp_cipher) == EVP_CIPH_CCM_MODE) {
loopfunc = EVP_Update_loop_ccm;
} else if (aead && (EVP_CIPHER_flags(evp_cipher) &
EVP_CIPH_FLAG_AEAD_CIPHER)) {
loopfunc = EVP_Update_loop_aead;
if (lengths == lengths_list) {
lengths = aead_lengths_list;
size_num = OSSL_NELEM(aead_lengths_list);
}
}
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_EVP], save_count, lengths[testnum],
seconds.sym);
for (k = 0; k < loopargs_len; k++) {
loopargs[k].ctx = EVP_CIPHER_CTX_new();
EVP_CipherInit_ex(loopargs[k].ctx, evp_cipher, NULL, NULL,
iv, decrypt ? 0 : 1);
EVP_CIPHER_CTX_set_padding(loopargs[k].ctx, 0);
keylen = EVP_CIPHER_CTX_key_length(loopargs[k].ctx);
loopargs[k].key = app_malloc(keylen, "evp_cipher key");
EVP_CIPHER_CTX_rand_key(loopargs[k].ctx, loopargs[k].key);
EVP_CipherInit_ex(loopargs[k].ctx, NULL, NULL,
loopargs[k].key, NULL, -1);
OPENSSL_clear_free(loopargs[k].key, keylen);
}
Time_F(START);
count = run_benchmark(async_jobs, loopfunc, loopargs);
d = Time_F(STOP);
for (k = 0; k < loopargs_len; k++) {
EVP_CIPHER_CTX_free(loopargs[k].ctx);
}
print_result(D_EVP, testnum, count, d);
}
} else if (evp_md != NULL) {
names[D_EVP] = OBJ_nid2ln(EVP_MD_type(evp_md));
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_EVP], save_count, lengths[testnum],
seconds.sym);
Time_F(START);
count = run_benchmark(async_jobs, EVP_Digest_loop, loopargs);
d = Time_F(STOP);
print_result(D_EVP, testnum, count, d);
}
}
}
for (i = 0; i < loopargs_len; i++)
if (RAND_bytes(loopargs[i].buf, 36) <= 0)
goto end;
#ifndef OPENSSL_NO_RSA
for (testnum = 0; testnum < RSA_NUM; testnum++) {
int st = 0;
if (!rsa_doit[testnum])
continue;
for (i = 0; i < loopargs_len; i++) {
if (primes > 2) {
/* we haven't set keys yet, generate multi-prime RSA keys */
BIGNUM *bn = BN_new();
if (bn == NULL)
goto end;
if (!BN_set_word(bn, RSA_F4)) {
BN_free(bn);
goto end;
}
BIO_printf(bio_err, "Generate multi-prime RSA key for %s\n",
rsa_choices[testnum].name);
loopargs[i].rsa_key[testnum] = RSA_new();
if (loopargs[i].rsa_key[testnum] == NULL) {
BN_free(bn);
goto end;
}
if (!RSA_generate_multi_prime_key(loopargs[i].rsa_key[testnum],
rsa_bits[testnum],
primes, bn, NULL)) {
BN_free(bn);
goto end;
}
BN_free(bn);
}
st = RSA_sign(NID_md5_sha1, loopargs[i].buf, 36, loopargs[i].buf2,
&loopargs[i].siglen, loopargs[i].rsa_key[testnum]);
if (st == 0)
break;
}
if (st == 0) {
BIO_printf(bio_err,
"RSA sign failure. No RSA sign will be done.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
} else {
pkey_print_message("private", "rsa",
rsa_c[testnum][0], rsa_bits[testnum],
seconds.rsa);
/* RSA_blinding_on(rsa_key[testnum],NULL); */
Time_F(START);
count = run_benchmark(async_jobs, RSA_sign_loop, loopargs);
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R1:%ld:%d:%.2f\n"
: "%ld %u bits private RSA's in %.2fs\n",
count, rsa_bits[testnum], d);
rsa_results[testnum][0] = (double)count / d;
rsa_count = count;
}
for (i = 0; i < loopargs_len; i++) {
st = RSA_verify(NID_md5_sha1, loopargs[i].buf, 36, loopargs[i].buf2,
loopargs[i].siglen, loopargs[i].rsa_key[testnum]);
if (st <= 0)
break;
}
if (st <= 0) {
BIO_printf(bio_err,
"RSA verify failure. No RSA verify will be done.\n");
ERR_print_errors(bio_err);
rsa_doit[testnum] = 0;
} else {
pkey_print_message("public", "rsa",
rsa_c[testnum][1], rsa_bits[testnum],
seconds.rsa);
Time_F(START);
count = run_benchmark(async_jobs, RSA_verify_loop, loopargs);
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R2:%ld:%d:%.2f\n"
: "%ld %u bits public RSA's in %.2fs\n",
count, rsa_bits[testnum], d);
rsa_results[testnum][1] = (double)count / d;
}
if (rsa_count <= 1) {
/* if longer than 10s, don't do any more */
for (testnum++; testnum < RSA_NUM; testnum++)
rsa_doit[testnum] = 0;
}
}
#endif /* OPENSSL_NO_RSA */
for (i = 0; i < loopargs_len; i++)
if (RAND_bytes(loopargs[i].buf, 36) <= 0)
goto end;
#ifndef OPENSSL_NO_DSA
for (testnum = 0; testnum < DSA_NUM; testnum++) {
int st = 0;
if (!dsa_doit[testnum])
continue;
/* DSA_generate_key(dsa_key[testnum]); */
/* DSA_sign_setup(dsa_key[testnum],NULL); */
for (i = 0; i < loopargs_len; i++) {
st = DSA_sign(0, loopargs[i].buf, 20, loopargs[i].buf2,
&loopargs[i].siglen, loopargs[i].dsa_key[testnum]);
if (st == 0)
break;
}
if (st == 0) {
BIO_printf(bio_err,
"DSA sign failure. No DSA sign will be done.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
} else {
pkey_print_message("sign", "dsa",
dsa_c[testnum][0], dsa_bits[testnum],
seconds.dsa);
Time_F(START);
count = run_benchmark(async_jobs, DSA_sign_loop, loopargs);
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R3:%ld:%u:%.2f\n"
: "%ld %u bits DSA signs in %.2fs\n",
count, dsa_bits[testnum], d);
dsa_results[testnum][0] = (double)count / d;
rsa_count = count;
}
for (i = 0; i < loopargs_len; i++) {
st = DSA_verify(0, loopargs[i].buf, 20, loopargs[i].buf2,
loopargs[i].siglen, loopargs[i].dsa_key[testnum]);
if (st <= 0)
break;
}
if (st <= 0) {
BIO_printf(bio_err,
"DSA verify failure. No DSA verify will be done.\n");
ERR_print_errors(bio_err);
dsa_doit[testnum] = 0;
} else {
pkey_print_message("verify", "dsa",
dsa_c[testnum][1], dsa_bits[testnum],
seconds.dsa);
Time_F(START);
count = run_benchmark(async_jobs, DSA_verify_loop, loopargs);
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R4:%ld:%u:%.2f\n"
: "%ld %u bits DSA verify in %.2fs\n",
count, dsa_bits[testnum], d);
dsa_results[testnum][1] = (double)count / d;
}
if (rsa_count <= 1) {
/* if longer than 10s, don't do any more */
for (testnum++; testnum < DSA_NUM; testnum++)
dsa_doit[testnum] = 0;
}
}
#endif /* OPENSSL_NO_DSA */
#ifndef OPENSSL_NO_EC
for (testnum = 0; testnum < ECDSA_NUM; testnum++) {
int st = 1;
if (!ecdsa_doit[testnum])
continue; /* Ignore Curve */
for (i = 0; i < loopargs_len; i++) {
loopargs[i].ecdsa[testnum] =
EC_KEY_new_by_curve_name(test_curves[testnum].nid);
if (loopargs[i].ecdsa[testnum] == NULL) {
st = 0;
break;
}
}
if (st == 0) {
BIO_printf(bio_err, "ECDSA failure.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
} else {
for (i = 0; i < loopargs_len; i++) {
EC_KEY_precompute_mult(loopargs[i].ecdsa[testnum], NULL);
/* Perform ECDSA signature test */
EC_KEY_generate_key(loopargs[i].ecdsa[testnum]);
st = ECDSA_sign(0, loopargs[i].buf, 20, loopargs[i].buf2,
&loopargs[i].siglen,
loopargs[i].ecdsa[testnum]);
if (st == 0)
break;
}
if (st == 0) {
BIO_printf(bio_err,
"ECDSA sign failure. No ECDSA sign will be done.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
} else {
pkey_print_message("sign", "ecdsa",
ecdsa_c[testnum][0],
test_curves[testnum].bits, seconds.ecdsa);
Time_F(START);
count = run_benchmark(async_jobs, ECDSA_sign_loop, loopargs);
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R5:%ld:%u:%.2f\n" :
"%ld %u bits ECDSA signs in %.2fs \n",
count, test_curves[testnum].bits, d);
ecdsa_results[testnum][0] = (double)count / d;
rsa_count = count;
}
/* Perform ECDSA verification test */
for (i = 0; i < loopargs_len; i++) {
st = ECDSA_verify(0, loopargs[i].buf, 20, loopargs[i].buf2,
loopargs[i].siglen,
loopargs[i].ecdsa[testnum]);
if (st != 1)
break;
}
if (st != 1) {
BIO_printf(bio_err,
"ECDSA verify failure. No ECDSA verify will be done.\n");
ERR_print_errors(bio_err);
ecdsa_doit[testnum] = 0;
} else {
pkey_print_message("verify", "ecdsa",
ecdsa_c[testnum][1],
test_curves[testnum].bits, seconds.ecdsa);
Time_F(START);
count = run_benchmark(async_jobs, ECDSA_verify_loop, loopargs);
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R6:%ld:%u:%.2f\n"
: "%ld %u bits ECDSA verify in %.2fs\n",
count, test_curves[testnum].bits, d);
ecdsa_results[testnum][1] = (double)count / d;
}
if (rsa_count <= 1) {
/* if longer than 10s, don't do any more */
for (testnum++; testnum < ECDSA_NUM; testnum++)
ecdsa_doit[testnum] = 0;
}
}
}
for (testnum = 0; testnum < EC_NUM; testnum++) {
int ecdh_checks = 1;
if (!ecdh_doit[testnum])
continue;
for (i = 0; i < loopargs_len; i++) {
EVP_PKEY_CTX *kctx = NULL;
EVP_PKEY_CTX *test_ctx = NULL;
EVP_PKEY_CTX *ctx = NULL;
EVP_PKEY *key_A = NULL;
EVP_PKEY *key_B = NULL;
size_t outlen;
size_t test_outlen;
/* Ensure that the error queue is empty */
if (ERR_peek_error()) {
BIO_printf(bio_err,
"WARNING: the error queue contains previous unhandled errors.\n");
ERR_print_errors(bio_err);
}
/* Let's try to create a ctx directly from the NID: this works for
* curves like Curve25519 that are not implemented through the low
* level EC interface.
* If this fails we try creating a EVP_PKEY_EC generic param ctx,
* then we set the curve by NID before deriving the actual keygen
* ctx for that specific curve. */
kctx = EVP_PKEY_CTX_new_id(test_curves[testnum].nid, NULL); /* keygen ctx from NID */
if (!kctx) {
EVP_PKEY_CTX *pctx = NULL;
EVP_PKEY *params = NULL;
/* If we reach this code EVP_PKEY_CTX_new_id() failed and a
* "int_ctx_new:unsupported algorithm" error was added to the
* error queue.
* We remove it from the error queue as we are handling it. */
unsigned long error = ERR_peek_error(); /* peek the latest error in the queue */
if (error == ERR_peek_last_error() && /* oldest and latest errors match */
/* check that the error origin matches */
ERR_GET_LIB(error) == ERR_LIB_EVP &&
ERR_GET_FUNC(error) == EVP_F_INT_CTX_NEW &&
ERR_GET_REASON(error) == EVP_R_UNSUPPORTED_ALGORITHM)
ERR_get_error(); /* pop error from queue */
if (ERR_peek_error()) {
BIO_printf(bio_err,
"Unhandled error in the error queue during ECDH init.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
break;
}
if ( /* Create the context for parameter generation */
!(pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_EC, NULL)) ||
/* Initialise the parameter generation */
!EVP_PKEY_paramgen_init(pctx) ||
/* Set the curve by NID */
!EVP_PKEY_CTX_set_ec_paramgen_curve_nid(pctx,
test_curves
[testnum].nid) ||
/* Create the parameter object params */
!EVP_PKEY_paramgen(pctx, &params)) {
ecdh_checks = 0;
BIO_printf(bio_err, "ECDH EC params init failure.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
break;
}
/* Create the context for the key generation */
kctx = EVP_PKEY_CTX_new(params, NULL);
EVP_PKEY_free(params);
params = NULL;
EVP_PKEY_CTX_free(pctx);
pctx = NULL;
}
if (kctx == NULL || /* keygen ctx is not null */
!EVP_PKEY_keygen_init(kctx) /* init keygen ctx */ ) {
ecdh_checks = 0;
BIO_printf(bio_err, "ECDH keygen failure.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
break;
}
if (!EVP_PKEY_keygen(kctx, &key_A) || /* generate secret key A */
!EVP_PKEY_keygen(kctx, &key_B) || /* generate secret key B */
!(ctx = EVP_PKEY_CTX_new(key_A, NULL)) || /* derivation ctx from skeyA */
!EVP_PKEY_derive_init(ctx) || /* init derivation ctx */
!EVP_PKEY_derive_set_peer(ctx, key_B) || /* set peer pubkey in ctx */
!EVP_PKEY_derive(ctx, NULL, &outlen) || /* determine max length */
outlen == 0 || /* ensure outlen is a valid size */
outlen > MAX_ECDH_SIZE /* avoid buffer overflow */ ) {
ecdh_checks = 0;
BIO_printf(bio_err, "ECDH key generation failure.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
break;
}
/* Here we perform a test run, comparing the output of a*B and b*A;
* we try this here and assume that further EVP_PKEY_derive calls
* never fail, so we can skip checks in the actually benchmarked
* code, for maximum performance. */
if (!(test_ctx = EVP_PKEY_CTX_new(key_B, NULL)) || /* test ctx from skeyB */
!EVP_PKEY_derive_init(test_ctx) || /* init derivation test_ctx */
!EVP_PKEY_derive_set_peer(test_ctx, key_A) || /* set peer pubkey in test_ctx */
!EVP_PKEY_derive(test_ctx, NULL, &test_outlen) || /* determine max length */
!EVP_PKEY_derive(ctx, loopargs[i].secret_a, &outlen) || /* compute a*B */
!EVP_PKEY_derive(test_ctx, loopargs[i].secret_b, &test_outlen) || /* compute b*A */
test_outlen != outlen /* compare output length */ ) {
ecdh_checks = 0;
BIO_printf(bio_err, "ECDH computation failure.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
break;
}
/* Compare the computation results: CRYPTO_memcmp() returns 0 if equal */
if (CRYPTO_memcmp(loopargs[i].secret_a,
loopargs[i].secret_b, outlen)) {
ecdh_checks = 0;
BIO_printf(bio_err, "ECDH computations don't match.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
break;
}
loopargs[i].ecdh_ctx[testnum] = ctx;
loopargs[i].outlen[testnum] = outlen;
EVP_PKEY_free(key_A);
EVP_PKEY_free(key_B);
EVP_PKEY_CTX_free(kctx);
kctx = NULL;
EVP_PKEY_CTX_free(test_ctx);
test_ctx = NULL;
}
if (ecdh_checks != 0) {
pkey_print_message("", "ecdh",
ecdh_c[testnum][0],
test_curves[testnum].bits, seconds.ecdh);
Time_F(START);
count =
run_benchmark(async_jobs, ECDH_EVP_derive_key_loop, loopargs);
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R7:%ld:%d:%.2f\n" :
"%ld %u-bits ECDH ops in %.2fs\n", count,
test_curves[testnum].bits, d);
ecdh_results[testnum][0] = (double)count / d;
rsa_count = count;
}
if (rsa_count <= 1) {
/* if longer than 10s, don't do any more */
for (testnum++; testnum < OSSL_NELEM(ecdh_doit); testnum++)
ecdh_doit[testnum] = 0;
}
}
for (testnum = 0; testnum < EdDSA_NUM; testnum++) {
int st = 1;
EVP_PKEY *ed_pkey = NULL;
EVP_PKEY_CTX *ed_pctx = NULL;
if (!eddsa_doit[testnum])
continue; /* Ignore Curve */
for (i = 0; i < loopargs_len; i++) {
loopargs[i].eddsa_ctx[testnum] = EVP_MD_CTX_new();
if (loopargs[i].eddsa_ctx[testnum] == NULL) {
st = 0;
break;
}
if ((ed_pctx = EVP_PKEY_CTX_new_id(test_ed_curves[testnum].nid, NULL))
== NULL
|| !EVP_PKEY_keygen_init(ed_pctx)
|| !EVP_PKEY_keygen(ed_pctx, &ed_pkey)) {
st = 0;
EVP_PKEY_CTX_free(ed_pctx);
break;
}
EVP_PKEY_CTX_free(ed_pctx);
if (!EVP_DigestSignInit(loopargs[i].eddsa_ctx[testnum], NULL, NULL,
NULL, ed_pkey)) {
st = 0;
EVP_PKEY_free(ed_pkey);
break;
}
EVP_PKEY_free(ed_pkey);
}
if (st == 0) {
BIO_printf(bio_err, "EdDSA failure.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
} else {
for (i = 0; i < loopargs_len; i++) {
/* Perform EdDSA signature test */
loopargs[i].sigsize = test_ed_curves[testnum].sigsize;
st = EVP_DigestSign(loopargs[i].eddsa_ctx[testnum],
loopargs[i].buf2, &loopargs[i].sigsize,
loopargs[i].buf, 20);
if (st == 0)
break;
}
if (st == 0) {
BIO_printf(bio_err,
"EdDSA sign failure. No EdDSA sign will be done.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
} else {
pkey_print_message("sign", test_ed_curves[testnum].name,
eddsa_c[testnum][0],
test_ed_curves[testnum].bits, seconds.eddsa);
Time_F(START);
count = run_benchmark(async_jobs, EdDSA_sign_loop, loopargs);
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R8:%ld:%u:%s:%.2f\n" :
"%ld %u bits %s signs in %.2fs \n",
count, test_ed_curves[testnum].bits,
test_ed_curves[testnum].name, d);
eddsa_results[testnum][0] = (double)count / d;
rsa_count = count;
}
/* Perform EdDSA verification test */
for (i = 0; i < loopargs_len; i++) {
st = EVP_DigestVerify(loopargs[i].eddsa_ctx[testnum],
loopargs[i].buf2, loopargs[i].sigsize,
loopargs[i].buf, 20);
if (st != 1)
break;
}
if (st != 1) {
BIO_printf(bio_err,
"EdDSA verify failure. No EdDSA verify will be done.\n");
ERR_print_errors(bio_err);
eddsa_doit[testnum] = 0;
} else {
pkey_print_message("verify", test_ed_curves[testnum].name,
eddsa_c[testnum][1],
test_ed_curves[testnum].bits, seconds.eddsa);
Time_F(START);
count = run_benchmark(async_jobs, EdDSA_verify_loop, loopargs);
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R9:%ld:%u:%s:%.2f\n"
: "%ld %u bits %s verify in %.2fs\n",
count, test_ed_curves[testnum].bits,
test_ed_curves[testnum].name, d);
eddsa_results[testnum][1] = (double)count / d;
}
if (rsa_count <= 1) {
/* if longer than 10s, don't do any more */
for (testnum++; testnum < EdDSA_NUM; testnum++)
eddsa_doit[testnum] = 0;
}
}
}
#endif /* OPENSSL_NO_EC */
#ifndef NO_FORK
show_res:
#endif
if (!mr) {
printf("%s\n", OpenSSL_version(OPENSSL_VERSION));
printf("%s\n", OpenSSL_version(OPENSSL_BUILT_ON));
printf("options:");
printf("%s ", BN_options());
#ifndef OPENSSL_NO_MD2
printf("%s ", MD2_options());
#endif
#ifndef OPENSSL_NO_RC4
printf("%s ", RC4_options());
#endif
#ifndef OPENSSL_NO_DES
printf("%s ", DES_options());
#endif
printf("%s ", AES_options());
#ifndef OPENSSL_NO_IDEA
printf("%s ", IDEA_options());
#endif
#ifndef OPENSSL_NO_BF
printf("%s ", BF_options());
#endif
printf("\n%s\n", OpenSSL_version(OPENSSL_CFLAGS));
}
if (pr_header) {
if (mr)
printf("+H");
else {
printf
("The 'numbers' are in 1000s of bytes per second processed.\n");
printf("type ");
}
for (testnum = 0; testnum < size_num; testnum++)
printf(mr ? ":%d" : "%7d bytes", lengths[testnum]);
printf("\n");
}
for (k = 0; k < ALGOR_NUM; k++) {
if (!doit[k])
continue;
if (mr)
printf("+F:%u:%s", k, names[k]);
else
printf("%-13s", names[k]);
for (testnum = 0; testnum < size_num; testnum++) {
if (results[k][testnum] > 10000 && !mr)
printf(" %11.2fk", results[k][testnum] / 1e3);
else
printf(mr ? ":%.2f" : " %11.2f ", results[k][testnum]);
}
printf("\n");
}
#ifndef OPENSSL_NO_RSA
testnum = 1;
for (k = 0; k < RSA_NUM; k++) {
if (!rsa_doit[k])
continue;
if (testnum && !mr) {
printf("%18ssign verify sign/s verify/s\n", " ");
testnum = 0;
}
if (mr)
printf("+F2:%u:%u:%f:%f\n",
k, rsa_bits[k], rsa_results[k][0], rsa_results[k][1]);
else
printf("rsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n",
rsa_bits[k], 1.0 / rsa_results[k][0], 1.0 / rsa_results[k][1],
rsa_results[k][0], rsa_results[k][1]);
}
#endif
#ifndef OPENSSL_NO_DSA
testnum = 1;
for (k = 0; k < DSA_NUM; k++) {
if (!dsa_doit[k])
continue;
if (testnum && !mr) {
printf("%18ssign verify sign/s verify/s\n", " ");
testnum = 0;
}
if (mr)
printf("+F3:%u:%u:%f:%f\n",
k, dsa_bits[k], dsa_results[k][0], dsa_results[k][1]);
else
printf("dsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n",
dsa_bits[k], 1.0 / dsa_results[k][0], 1.0 / dsa_results[k][1],
dsa_results[k][0], dsa_results[k][1]);
}
#endif
#ifndef OPENSSL_NO_EC
testnum = 1;
for (k = 0; k < OSSL_NELEM(ecdsa_doit); k++) {
if (!ecdsa_doit[k])
continue;
if (testnum && !mr) {
printf("%30ssign verify sign/s verify/s\n", " ");
testnum = 0;
}
if (mr)
printf("+F4:%u:%u:%f:%f\n",
k, test_curves[k].bits,
ecdsa_results[k][0], ecdsa_results[k][1]);
else
printf("%4u bits ecdsa (%s) %8.4fs %8.4fs %8.1f %8.1f\n",
test_curves[k].bits, test_curves[k].name,
1.0 / ecdsa_results[k][0], 1.0 / ecdsa_results[k][1],
ecdsa_results[k][0], ecdsa_results[k][1]);
}
testnum = 1;
for (k = 0; k < EC_NUM; k++) {
if (!ecdh_doit[k])
continue;
if (testnum && !mr) {
printf("%30sop op/s\n", " ");
testnum = 0;
}
if (mr)
printf("+F5:%u:%u:%f:%f\n",
k, test_curves[k].bits,
ecdh_results[k][0], 1.0 / ecdh_results[k][0]);
else
printf("%4u bits ecdh (%s) %8.4fs %8.1f\n",
test_curves[k].bits, test_curves[k].name,
1.0 / ecdh_results[k][0], ecdh_results[k][0]);
}
testnum = 1;
for (k = 0; k < OSSL_NELEM(eddsa_doit); k++) {
if (!eddsa_doit[k])
continue;
if (testnum && !mr) {
printf("%30ssign verify sign/s verify/s\n", " ");
testnum = 0;
}
if (mr)
printf("+F6:%u:%u:%s:%f:%f\n",
k, test_ed_curves[k].bits, test_ed_curves[k].name,
eddsa_results[k][0], eddsa_results[k][1]);
else
printf("%4u bits EdDSA (%s) %8.4fs %8.4fs %8.1f %8.1f\n",
test_ed_curves[k].bits, test_ed_curves[k].name,
1.0 / eddsa_results[k][0], 1.0 / eddsa_results[k][1],
eddsa_results[k][0], eddsa_results[k][1]);
}
#endif
ret = 0;
end:
ERR_print_errors(bio_err);
for (i = 0; i < loopargs_len; i++) {
OPENSSL_free(loopargs[i].buf_malloc);
OPENSSL_free(loopargs[i].buf2_malloc);
#ifndef OPENSSL_NO_RSA
for (k = 0; k < RSA_NUM; k++)
RSA_free(loopargs[i].rsa_key[k]);
#endif
#ifndef OPENSSL_NO_DSA
for (k = 0; k < DSA_NUM; k++)
DSA_free(loopargs[i].dsa_key[k]);
#endif
#ifndef OPENSSL_NO_EC
for (k = 0; k < ECDSA_NUM; k++)
EC_KEY_free(loopargs[i].ecdsa[k]);
for (k = 0; k < EC_NUM; k++)
EVP_PKEY_CTX_free(loopargs[i].ecdh_ctx[k]);
for (k = 0; k < EdDSA_NUM; k++)
EVP_MD_CTX_free(loopargs[i].eddsa_ctx[k]);
OPENSSL_free(loopargs[i].secret_a);
OPENSSL_free(loopargs[i].secret_b);
#endif
}
if (async_jobs > 0) {
for (i = 0; i < loopargs_len; i++)
ASYNC_WAIT_CTX_free(loopargs[i].wait_ctx);
}
if (async_init) {
ASYNC_cleanup_thread();
}
OPENSSL_free(loopargs);
release_engine(e);
return ret;
}
static void print_message(const char *s, long num, int length, int tm)
{
#ifdef SIGALRM
BIO_printf(bio_err,
mr ? "+DT:%s:%d:%d\n"
: "Doing %s for %ds on %d size blocks: ", s, tm, length);
(void)BIO_flush(bio_err);
alarm(tm);
#else
BIO_printf(bio_err,
mr ? "+DN:%s:%ld:%d\n"
: "Doing %s %ld times on %d size blocks: ", s, num, length);
(void)BIO_flush(bio_err);
#endif
}
static void pkey_print_message(const char *str, const char *str2, long num,
unsigned int bits, int tm)
{
#ifdef SIGALRM
BIO_printf(bio_err,
mr ? "+DTP:%d:%s:%s:%d\n"
: "Doing %u bits %s %s's for %ds: ", bits, str, str2, tm);
(void)BIO_flush(bio_err);
alarm(tm);
#else
BIO_printf(bio_err,
mr ? "+DNP:%ld:%d:%s:%s\n"
: "Doing %ld %u bits %s %s's: ", num, bits, str, str2);
(void)BIO_flush(bio_err);
#endif
}
static void print_result(int alg, int run_no, int count, double time_used)
{
if (count == -1) {
BIO_puts(bio_err, "EVP error!\n");
exit(1);
}
BIO_printf(bio_err,
mr ? "+R:%d:%s:%f\n"
: "%d %s's in %.2fs\n", count, names[alg], time_used);
results[alg][run_no] = ((double)count) / time_used * lengths[run_no];
}
#ifndef NO_FORK
static char *sstrsep(char **string, const char *delim)
{
char isdelim[256];
char *token = *string;
if (**string == 0)
return NULL;
memset(isdelim, 0, sizeof(isdelim));
isdelim[0] = 1;
while (*delim) {
isdelim[(unsigned char)(*delim)] = 1;
delim++;
}
while (!isdelim[(unsigned char)(**string)]) {
(*string)++;
}
if (**string) {
**string = 0;
(*string)++;
}
return token;
}
static int do_multi(int multi, int size_num)
{
int n;
int fd[2];
int *fds;
static char sep[] = ":";
fds = app_malloc(sizeof(*fds) * multi, "fd buffer for do_multi");
for (n = 0; n < multi; ++n) {
if (pipe(fd) == -1) {
BIO_printf(bio_err, "pipe failure\n");
exit(1);
}
fflush(stdout);
(void)BIO_flush(bio_err);
if (fork()) {
close(fd[1]);
fds[n] = fd[0];
} else {
close(fd[0]);
close(1);
if (dup(fd[1]) == -1) {
BIO_printf(bio_err, "dup failed\n");
exit(1);
}
close(fd[1]);
mr = 1;
usertime = 0;
free(fds);
return 0;
}
printf("Forked child %d\n", n);
}
/* for now, assume the pipe is long enough to take all the output */
for (n = 0; n < multi; ++n) {
FILE *f;
char buf[1024];
char *p;
f = fdopen(fds[n], "r");
while (fgets(buf, sizeof(buf), f)) {
p = strchr(buf, '\n');
if (p)
*p = '\0';
if (buf[0] != '+') {
BIO_printf(bio_err,
"Don't understand line '%s' from child %d\n", buf,
n);
continue;
}
printf("Got: %s from %d\n", buf, n);
if (strncmp(buf, "+F:", 3) == 0) {
int alg;
int j;
p = buf + 3;
alg = atoi(sstrsep(&p, sep));
sstrsep(&p, sep);
for (j = 0; j < size_num; ++j)
results[alg][j] += atof(sstrsep(&p, sep));
} else if (strncmp(buf, "+F2:", 4) == 0) {
int k;
double d;
p = buf + 4;
k = atoi(sstrsep(&p, sep));
sstrsep(&p, sep);
d = atof(sstrsep(&p, sep));
rsa_results[k][0] += d;
d = atof(sstrsep(&p, sep));
rsa_results[k][1] += d;
}
# ifndef OPENSSL_NO_DSA
else if (strncmp(buf, "+F3:", 4) == 0) {
int k;
double d;
p = buf + 4;
k = atoi(sstrsep(&p, sep));
sstrsep(&p, sep);
d = atof(sstrsep(&p, sep));
dsa_results[k][0] += d;
d = atof(sstrsep(&p, sep));
dsa_results[k][1] += d;
}
# endif
# ifndef OPENSSL_NO_EC
else if (strncmp(buf, "+F4:", 4) == 0) {
int k;
double d;
p = buf + 4;
k = atoi(sstrsep(&p, sep));
sstrsep(&p, sep);
d = atof(sstrsep(&p, sep));
ecdsa_results[k][0] += d;
d = atof(sstrsep(&p, sep));
ecdsa_results[k][1] += d;
} else if (strncmp(buf, "+F5:", 4) == 0) {
int k;
double d;
p = buf + 4;
k = atoi(sstrsep(&p, sep));
sstrsep(&p, sep);
d = atof(sstrsep(&p, sep));
ecdh_results[k][0] += d;
} else if (strncmp(buf, "+F6:", 4) == 0) {
int k;
double d;
p = buf + 4;
k = atoi(sstrsep(&p, sep));
sstrsep(&p, sep);
d = atof(sstrsep(&p, sep));
eddsa_results[k][0] += d;
d = atof(sstrsep(&p, sep));
eddsa_results[k][1] += d;
}
# endif
else if (strncmp(buf, "+H:", 3) == 0) {
;
} else
BIO_printf(bio_err, "Unknown type '%s' from child %d\n", buf,
n);
}
fclose(f);
}
free(fds);
return 1;
}
#endif
static void multiblock_speed(const EVP_CIPHER *evp_cipher, int lengths_single,
const openssl_speed_sec_t *seconds)
{
static const int mblengths_list[] =
{ 8 * 1024, 2 * 8 * 1024, 4 * 8 * 1024, 8 * 8 * 1024, 8 * 16 * 1024 };
const int *mblengths = mblengths_list;
int j, count, keylen, num = OSSL_NELEM(mblengths_list);
const char *alg_name;
unsigned char *inp, *out, *key, no_key[32], no_iv[16];
EVP_CIPHER_CTX *ctx;
double d = 0.0;
if (lengths_single) {
mblengths = &lengths_single;
num = 1;
}
inp = app_malloc(mblengths[num - 1], "multiblock input buffer");
out = app_malloc(mblengths[num - 1] + 1024, "multiblock output buffer");
ctx = EVP_CIPHER_CTX_new();
EVP_EncryptInit_ex(ctx, evp_cipher, NULL, NULL, no_iv);
keylen = EVP_CIPHER_CTX_key_length(ctx);
key = app_malloc(keylen, "evp_cipher key");
EVP_CIPHER_CTX_rand_key(ctx, key);
EVP_EncryptInit_ex(ctx, NULL, NULL, key, NULL);
OPENSSL_clear_free(key, keylen);
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_MAC_KEY, sizeof(no_key), no_key);
alg_name = OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher));
for (j = 0; j < num; j++) {
print_message(alg_name, 0, mblengths[j], seconds->sym);
Time_F(START);
for (count = 0, run = 1; run && count < 0x7fffffff; count++) {
unsigned char aad[EVP_AEAD_TLS1_AAD_LEN];
EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM mb_param;
size_t len = mblengths[j];
int packlen;
memset(aad, 0, 8); /* avoid uninitialized values */
aad[8] = 23; /* SSL3_RT_APPLICATION_DATA */
aad[9] = 3; /* version */
aad[10] = 2;
aad[11] = 0; /* length */
aad[12] = 0;
mb_param.out = NULL;
mb_param.inp = aad;
mb_param.len = len;
mb_param.interleave = 8;
packlen = EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_TLS1_1_MULTIBLOCK_AAD,
sizeof(mb_param), &mb_param);
if (packlen > 0) {
mb_param.out = out;
mb_param.inp = inp;
mb_param.len = len;
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT,
sizeof(mb_param), &mb_param);
} else {
int pad;
RAND_bytes(out, 16);
len += 16;
aad[11] = (unsigned char)(len >> 8);
aad[12] = (unsigned char)(len);
pad = EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_TLS1_AAD,
EVP_AEAD_TLS1_AAD_LEN, aad);
EVP_Cipher(ctx, out, inp, len + pad);
}
}
d = Time_F(STOP);
BIO_printf(bio_err, mr ? "+R:%d:%s:%f\n"
: "%d %s's in %.2fs\n", count, "evp", d);
results[D_EVP][j] = ((double)count) / d * mblengths[j];
}
if (mr) {
fprintf(stdout, "+H");
for (j = 0; j < num; j++)
fprintf(stdout, ":%d", mblengths[j]);
fprintf(stdout, "\n");
fprintf(stdout, "+F:%d:%s", D_EVP, alg_name);
for (j = 0; j < num; j++)
fprintf(stdout, ":%.2f", results[D_EVP][j]);
fprintf(stdout, "\n");
} else {
fprintf(stdout,
"The 'numbers' are in 1000s of bytes per second processed.\n");
fprintf(stdout, "type ");
for (j = 0; j < num; j++)
fprintf(stdout, "%7d bytes", mblengths[j]);
fprintf(stdout, "\n");
fprintf(stdout, "%-24s", alg_name);
for (j = 0; j < num; j++) {
if (results[D_EVP][j] > 10000)
fprintf(stdout, " %11.2fk", results[D_EVP][j] / 1e3);
else
fprintf(stdout, " %11.2f ", results[D_EVP][j]);
}
fprintf(stdout, "\n");
}
OPENSSL_free(inp);
OPENSSL_free(out);
EVP_CIPHER_CTX_free(ctx);
}