ssl_des/lib/openssl/crypto/ec/curve448/f_generic.c
2019-04-06 16:42:39 +03:00

204 lines
5.2 KiB
C

/*
* Copyright 2017-2018 The OpenSSL Project Authors. All Rights Reserved.
* Copyright 2015-2016 Cryptography Research, Inc.
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*
* Originally written by Mike Hamburg
*/
#include "field.h"
static const gf MODULUS = {
FIELD_LITERAL(0xffffffffffffffULL, 0xffffffffffffffULL, 0xffffffffffffffULL,
0xffffffffffffffULL, 0xfffffffffffffeULL, 0xffffffffffffffULL,
0xffffffffffffffULL, 0xffffffffffffffULL)
};
/* Serialize to wire format. */
void gf_serialize(uint8_t serial[SER_BYTES], const gf x, int with_hibit)
{
unsigned int j = 0, fill = 0;
dword_t buffer = 0;
int i;
gf red;
gf_copy(red, x);
gf_strong_reduce(red);
if (!with_hibit)
assert(gf_hibit(red) == 0);
for (i = 0; i < (with_hibit ? X_SER_BYTES : SER_BYTES); i++) {
if (fill < 8 && j < NLIMBS) {
buffer |= ((dword_t) red->limb[LIMBPERM(j)]) << fill;
fill += LIMB_PLACE_VALUE(LIMBPERM(j));
j++;
}
serial[i] = (uint8_t)buffer;
fill -= 8;
buffer >>= 8;
}
}
/* Return high bit of x = low bit of 2x mod p */
mask_t gf_hibit(const gf x)
{
gf y;
gf_add(y, x, x);
gf_strong_reduce(y);
return 0 - (y->limb[0] & 1);
}
/* Return high bit of x = low bit of 2x mod p */
mask_t gf_lobit(const gf x)
{
gf y;
gf_copy(y, x);
gf_strong_reduce(y);
return 0 - (y->limb[0] & 1);
}
/* Deserialize from wire format; return -1 on success and 0 on failure. */
mask_t gf_deserialize(gf x, const uint8_t serial[SER_BYTES], int with_hibit,
uint8_t hi_nmask)
{
unsigned int j = 0, fill = 0;
dword_t buffer = 0;
dsword_t scarry = 0;
const unsigned nbytes = with_hibit ? X_SER_BYTES : SER_BYTES;
unsigned int i;
mask_t succ;
for (i = 0; i < NLIMBS; i++) {
while (fill < LIMB_PLACE_VALUE(LIMBPERM(i)) && j < nbytes) {
uint8_t sj;
sj = serial[j];
if (j == nbytes - 1)
sj &= ~hi_nmask;
buffer |= ((dword_t) sj) << fill;
fill += 8;
j++;
}
x->limb[LIMBPERM(i)] = (word_t)
((i < NLIMBS - 1) ? buffer & LIMB_MASK(LIMBPERM(i)) : buffer);
fill -= LIMB_PLACE_VALUE(LIMBPERM(i));
buffer >>= LIMB_PLACE_VALUE(LIMBPERM(i));
scarry =
(scarry + x->limb[LIMBPERM(i)] -
MODULUS->limb[LIMBPERM(i)]) >> (8 * sizeof(word_t));
}
succ = with_hibit ? 0 - (mask_t) 1 : ~gf_hibit(x);
return succ & word_is_zero((word_t)buffer) & ~word_is_zero((word_t)scarry);
}
/* Reduce to canonical form. */
void gf_strong_reduce(gf a)
{
dsword_t scarry;
word_t scarry_0;
dword_t carry = 0;
unsigned int i;
/* first, clear high */
gf_weak_reduce(a); /* Determined to have negligible perf impact. */
/* now the total is less than 2p */
/* compute total_value - p. No need to reduce mod p. */
scarry = 0;
for (i = 0; i < NLIMBS; i++) {
scarry = scarry + a->limb[LIMBPERM(i)] - MODULUS->limb[LIMBPERM(i)];
a->limb[LIMBPERM(i)] = scarry & LIMB_MASK(LIMBPERM(i));
scarry >>= LIMB_PLACE_VALUE(LIMBPERM(i));
}
/*
* uncommon case: it was >= p, so now scarry = 0 and this = x common case:
* it was < p, so now scarry = -1 and this = x - p + 2^255 so let's add
* back in p. will carry back off the top for 2^255.
*/
assert(scarry == 0 || scarry == -1);
scarry_0 = (word_t)scarry;
/* add it back */
for (i = 0; i < NLIMBS; i++) {
carry =
carry + a->limb[LIMBPERM(i)] +
(scarry_0 & MODULUS->limb[LIMBPERM(i)]);
a->limb[LIMBPERM(i)] = carry & LIMB_MASK(LIMBPERM(i));
carry >>= LIMB_PLACE_VALUE(LIMBPERM(i));
}
assert(carry < 2 && ((word_t)carry + scarry_0) == 0);
}
/* Subtract two gf elements d=a-b */
void gf_sub(gf d, const gf a, const gf b)
{
gf_sub_RAW(d, a, b);
gf_bias(d, 2);
gf_weak_reduce(d);
}
/* Add two field elements d = a+b */
void gf_add(gf d, const gf a, const gf b)
{
gf_add_RAW(d, a, b);
gf_weak_reduce(d);
}
/* Compare a==b */
mask_t gf_eq(const gf a, const gf b)
{
gf c;
mask_t ret = 0;
unsigned int i;
gf_sub(c, a, b);
gf_strong_reduce(c);
for (i = 0; i < NLIMBS; i++)
ret |= c->limb[LIMBPERM(i)];
return word_is_zero(ret);
}
mask_t gf_isr(gf a, const gf x)
{
gf L0, L1, L2;
gf_sqr(L1, x);
gf_mul(L2, x, L1);
gf_sqr(L1, L2);
gf_mul(L2, x, L1);
gf_sqrn(L1, L2, 3);
gf_mul(L0, L2, L1);
gf_sqrn(L1, L0, 3);
gf_mul(L0, L2, L1);
gf_sqrn(L2, L0, 9);
gf_mul(L1, L0, L2);
gf_sqr(L0, L1);
gf_mul(L2, x, L0);
gf_sqrn(L0, L2, 18);
gf_mul(L2, L1, L0);
gf_sqrn(L0, L2, 37);
gf_mul(L1, L2, L0);
gf_sqrn(L0, L1, 37);
gf_mul(L1, L2, L0);
gf_sqrn(L0, L1, 111);
gf_mul(L2, L1, L0);
gf_sqr(L0, L2);
gf_mul(L1, x, L0);
gf_sqrn(L0, L1, 223);
gf_mul(L1, L2, L0);
gf_sqr(L2, L1);
gf_mul(L0, L2, x);
gf_copy(a, L1);
return gf_eq(L0, ONE);
}