ssl_des/lib/openssl/crypto/aes/asm/vpaes-ppc.pl
2019-04-06 16:42:39 +03:00

1594 lines
42 KiB
Perl
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#! /usr/bin/env perl
# Copyright 2013-2016 The OpenSSL Project Authors. All Rights Reserved.
#
# Licensed under the OpenSSL license (the "License"). You may not use
# this file except in compliance with the License. You can obtain a copy
# in the file LICENSE in the source distribution or at
# https://www.openssl.org/source/license.html
######################################################################
## Constant-time SSSE3 AES core implementation.
## version 0.1
##
## By Mike Hamburg (Stanford University), 2009
## Public domain.
##
## For details see http://shiftleft.org/papers/vector_aes/ and
## http://crypto.stanford.edu/vpaes/.
# CBC encrypt/decrypt performance in cycles per byte processed with
# 128-bit key.
#
# aes-ppc.pl this
# PPC74x0/G4e 35.5/52.1/(23.8) 11.9(*)/15.4
# PPC970/G5 37.9/55.0/(28.5) 22.2/28.5
# POWER6 42.7/54.3/(28.2) 63.0/92.8(**)
# POWER7 32.3/42.9/(18.4) 18.5/23.3
#
# (*) This is ~10% worse than reported in paper. The reason is
# twofold. This module doesn't make any assumption about
# key schedule (or data for that matter) alignment and handles
# it in-line. Secondly it, being transliterated from
# vpaes-x86_64.pl, relies on "nested inversion" better suited
# for Intel CPUs.
# (**) Inadequate POWER6 performance is due to astronomic AltiVec
# latency, 9 cycles per simple logical operation.
$flavour = shift;
if ($flavour =~ /64/) {
$SIZE_T =8;
$LRSAVE =2*$SIZE_T;
$STU ="stdu";
$POP ="ld";
$PUSH ="std";
$UCMP ="cmpld";
} elsif ($flavour =~ /32/) {
$SIZE_T =4;
$LRSAVE =$SIZE_T;
$STU ="stwu";
$POP ="lwz";
$PUSH ="stw";
$UCMP ="cmplw";
} else { die "nonsense $flavour"; }
$sp="r1";
$FRAME=6*$SIZE_T+13*16; # 13*16 is for v20-v31 offload
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
( $xlate="${dir}ppc-xlate.pl" and -f $xlate ) or
( $xlate="${dir}../../perlasm/ppc-xlate.pl" and -f $xlate) or
die "can't locate ppc-xlate.pl";
open STDOUT,"| $^X $xlate $flavour ".shift || die "can't call $xlate: $!";
$code.=<<___;
.machine "any"
.text
.align 7 # totally strategic alignment
_vpaes_consts:
Lk_mc_forward: # mc_forward
.long 0x01020300, 0x05060704, 0x090a0b08, 0x0d0e0f0c ?inv
.long 0x05060704, 0x090a0b08, 0x0d0e0f0c, 0x01020300 ?inv
.long 0x090a0b08, 0x0d0e0f0c, 0x01020300, 0x05060704 ?inv
.long 0x0d0e0f0c, 0x01020300, 0x05060704, 0x090a0b08 ?inv
Lk_mc_backward: # mc_backward
.long 0x03000102, 0x07040506, 0x0b08090a, 0x0f0c0d0e ?inv
.long 0x0f0c0d0e, 0x03000102, 0x07040506, 0x0b08090a ?inv
.long 0x0b08090a, 0x0f0c0d0e, 0x03000102, 0x07040506 ?inv
.long 0x07040506, 0x0b08090a, 0x0f0c0d0e, 0x03000102 ?inv
Lk_sr: # sr
.long 0x00010203, 0x04050607, 0x08090a0b, 0x0c0d0e0f ?inv
.long 0x00050a0f, 0x04090e03, 0x080d0207, 0x0c01060b ?inv
.long 0x0009020b, 0x040d060f, 0x08010a03, 0x0c050e07 ?inv
.long 0x000d0a07, 0x04010e0b, 0x0805020f, 0x0c090603 ?inv
##
## "Hot" constants
##
Lk_inv: # inv, inva
.long 0xf001080d, 0x0f06050e, 0x020c0b0a, 0x09030704 ?rev
.long 0xf0070b0f, 0x060a0401, 0x09080502, 0x0c0e0d03 ?rev
Lk_ipt: # input transform (lo, hi)
.long 0x00702a5a, 0x98e8b2c2, 0x08782252, 0x90e0baca ?rev
.long 0x004d7c31, 0x7d30014c, 0x81ccfdb0, 0xfcb180cd ?rev
Lk_sbo: # sbou, sbot
.long 0x00c7bd6f, 0x176dd2d0, 0x78a802c5, 0x7abfaa15 ?rev
.long 0x006abb5f, 0xa574e4cf, 0xfa352b41, 0xd1901e8e ?rev
Lk_sb1: # sb1u, sb1t
.long 0x0023e2fa, 0x15d41836, 0xefd92e0d, 0xc1ccf73b ?rev
.long 0x003e50cb, 0x8fe19bb1, 0x44f52a14, 0x6e7adfa5 ?rev
Lk_sb2: # sb2u, sb2t
.long 0x0029e10a, 0x4088eb69, 0x4a2382ab, 0xc863a1c2 ?rev
.long 0x0024710b, 0xc6937ae2, 0xcd2f98bc, 0x55e9b75e ?rev
##
## Decryption stuff
##
Lk_dipt: # decryption input transform
.long 0x005f540b, 0x045b500f, 0x1a454e11, 0x1e414a15 ?rev
.long 0x00650560, 0xe683e386, 0x94f191f4, 0x72177712 ?rev
Lk_dsbo: # decryption sbox final output
.long 0x0040f97e, 0x53ea8713, 0x2d3e94d4, 0xb96daac7 ?rev
.long 0x001d4493, 0x0f56d712, 0x9c8ec5d8, 0x59814bca ?rev
Lk_dsb9: # decryption sbox output *9*u, *9*t
.long 0x00d6869a, 0x53031c85, 0xc94c994f, 0x501fd5ca ?rev
.long 0x0049d7ec, 0x89173bc0, 0x65a5fbb2, 0x9e2c5e72 ?rev
Lk_dsbd: # decryption sbox output *D*u, *D*t
.long 0x00a2b1e6, 0xdfcc577d, 0x39442a88, 0x139b6ef5 ?rev
.long 0x00cbc624, 0xf7fae23c, 0xd3efde15, 0x0d183129 ?rev
Lk_dsbb: # decryption sbox output *B*u, *B*t
.long 0x0042b496, 0x926422d0, 0x04d4f2b0, 0xf6462660 ?rev
.long 0x006759cd, 0xa69894c1, 0x6baa5532, 0x3e0cfff3 ?rev
Lk_dsbe: # decryption sbox output *E*u, *E*t
.long 0x00d0d426, 0x9692f246, 0xb0f6b464, 0x04604222 ?rev
.long 0x00c1aaff, 0xcda6550c, 0x323e5998, 0x6bf36794 ?rev
##
## Key schedule constants
##
Lk_dksd: # decryption key schedule: invskew x*D
.long 0x0047e4a3, 0x5d1ab9fe, 0xf9be1d5a, 0xa4e34007 ?rev
.long 0x008336b5, 0xf477c241, 0x1e9d28ab, 0xea69dc5f ?rev
Lk_dksb: # decryption key schedule: invskew x*B
.long 0x00d55085, 0x1fca4f9a, 0x994cc91c, 0x8653d603 ?rev
.long 0x004afcb6, 0xa7ed5b11, 0xc882347e, 0x6f2593d9 ?rev
Lk_dkse: # decryption key schedule: invskew x*E + 0x63
.long 0x00d6c91f, 0xca1c03d5, 0x86504f99, 0x4c9a8553 ?rev
.long 0xe87bdc4f, 0x059631a2, 0x8714b320, 0x6af95ecd ?rev
Lk_dks9: # decryption key schedule: invskew x*9
.long 0x00a7d97e, 0xc86f11b6, 0xfc5b2582, 0x3493ed4a ?rev
.long 0x00331427, 0x62517645, 0xcefddae9, 0xac9fb88b ?rev
Lk_rcon: # rcon
.long 0xb6ee9daf, 0xb991831f, 0x817d7c4d, 0x08982a70 ?asis
Lk_s63:
.long 0x5b5b5b5b, 0x5b5b5b5b, 0x5b5b5b5b, 0x5b5b5b5b ?asis
Lk_opt: # output transform
.long 0x0060b6d6, 0x29499fff, 0x0868bede, 0x214197f7 ?rev
.long 0x00ecbc50, 0x51bded01, 0xe00c5cb0, 0xb15d0de1 ?rev
Lk_deskew: # deskew tables: inverts the sbox's "skew"
.long 0x00e3a447, 0x40a3e407, 0x1af9be5d, 0x5ab9fe1d ?rev
.long 0x0069ea83, 0xdcb5365f, 0x771e9df4, 0xabc24128 ?rev
.align 5
Lconsts:
mflr r0
bcl 20,31,\$+4
mflr r12 #vvvvv "distance between . and _vpaes_consts
addi r12,r12,-0x308
mtlr r0
blr
.long 0
.byte 0,12,0x14,0,0,0,0,0
.asciz "Vector Permutation AES for AltiVec, Mike Hamburg (Stanford University)"
.align 6
___
my ($inptail,$inpperm,$outhead,$outperm,$outmask,$keyperm) = map("v$_",(26..31));
{
my ($inp,$out,$key) = map("r$_",(3..5));
my ($invlo,$invhi,$iptlo,$ipthi,$sbou,$sbot) = map("v$_",(10..15));
my ($sb1u,$sb1t,$sb2u,$sb2t) = map("v$_",(16..19));
my ($sb9u,$sb9t,$sbdu,$sbdt,$sbbu,$sbbt,$sbeu,$sbet)=map("v$_",(16..23));
$code.=<<___;
##
## _aes_preheat
##
## Fills register %r10 -> .aes_consts (so you can -fPIC)
## and %xmm9-%xmm15 as specified below.
##
.align 4
_vpaes_encrypt_preheat:
mflr r8
bl Lconsts
mtlr r8
li r11, 0xc0 # Lk_inv
li r10, 0xd0
li r9, 0xe0 # Lk_ipt
li r8, 0xf0
vxor v7, v7, v7 # 0x00..00
vspltisb v8,4 # 0x04..04
vspltisb v9,0x0f # 0x0f..0f
lvx $invlo, r12, r11
li r11, 0x100
lvx $invhi, r12, r10
li r10, 0x110
lvx $iptlo, r12, r9
li r9, 0x120
lvx $ipthi, r12, r8
li r8, 0x130
lvx $sbou, r12, r11
li r11, 0x140
lvx $sbot, r12, r10
li r10, 0x150
lvx $sb1u, r12, r9
lvx $sb1t, r12, r8
lvx $sb2u, r12, r11
lvx $sb2t, r12, r10
blr
.long 0
.byte 0,12,0x14,0,0,0,0,0
##
## _aes_encrypt_core
##
## AES-encrypt %xmm0.
##
## Inputs:
## %xmm0 = input
## %xmm9-%xmm15 as in _vpaes_preheat
## (%rdx) = scheduled keys
##
## Output in %xmm0
## Clobbers %xmm1-%xmm6, %r9, %r10, %r11, %rax
##
##
.align 5
_vpaes_encrypt_core:
lwz r8, 240($key) # pull rounds
li r9, 16
lvx v5, 0, $key # vmovdqu (%r9), %xmm5 # round0 key
li r11, 0x10
lvx v6, r9, $key
addi r9, r9, 16
?vperm v5, v5, v6, $keyperm # align round key
addi r10, r11, 0x40
vsrb v1, v0, v8 # vpsrlb \$4, %xmm0, %xmm0
vperm v0, $iptlo, $iptlo, v0 # vpshufb %xmm1, %xmm2, %xmm1
vperm v1, $ipthi, $ipthi, v1 # vpshufb %xmm0, %xmm3, %xmm2
vxor v0, v0, v5 # vpxor %xmm5, %xmm1, %xmm0
vxor v0, v0, v1 # vpxor %xmm2, %xmm0, %xmm0
mtctr r8
b Lenc_entry
.align 4
Lenc_loop:
# middle of middle round
vperm v4, $sb1t, v7, v2 # vpshufb %xmm2, %xmm13, %xmm4 # 4 = sb1u
lvx v1, r12, r11 # vmovdqa -0x40(%r11,%r10), %xmm1 # .Lk_mc_forward[]
addi r11, r11, 16
vperm v0, $sb1u, v7, v3 # vpshufb %xmm3, %xmm12, %xmm0 # 0 = sb1t
vxor v4, v4, v5 # vpxor %xmm5, %xmm4, %xmm4 # 4 = sb1u + k
andi. r11, r11, 0x30 # and \$0x30, %r11 # ... mod 4
vperm v5, $sb2t, v7, v2 # vpshufb %xmm2, %xmm15, %xmm5 # 4 = sb2u
vxor v0, v0, v4 # vpxor %xmm4, %xmm0, %xmm0 # 0 = A
vperm v2, $sb2u, v7, v3 # vpshufb %xmm3, %xmm14, %xmm2 # 2 = sb2t
lvx v4, r12, r10 # vmovdqa (%r11,%r10), %xmm4 # .Lk_mc_backward[]
addi r10, r11, 0x40
vperm v3, v0, v7, v1 # vpshufb %xmm1, %xmm0, %xmm3 # 0 = B
vxor v2, v2, v5 # vpxor %xmm5, %xmm2, %xmm2 # 2 = 2A
vperm v0, v0, v7, v4 # vpshufb %xmm4, %xmm0, %xmm0 # 3 = D
vxor v3, v3, v2 # vpxor %xmm2, %xmm3, %xmm3 # 0 = 2A+B
vperm v4, v3, v7, v1 # vpshufb %xmm1, %xmm3, %xmm4 # 0 = 2B+C
vxor v0, v0, v3 # vpxor %xmm3, %xmm0, %xmm0 # 3 = 2A+B+D
vxor v0, v0, v4 # vpxor %xmm4, %xmm0, %xmm0 # 0 = 2A+3B+C+D
Lenc_entry:
# top of round
vsrb v1, v0, v8 # vpsrlb \$4, %xmm0, %xmm0 # 1 = i
vperm v5, $invhi, $invhi, v0 # vpshufb %xmm1, %xmm11, %xmm5 # 2 = a/k
vxor v0, v0, v1 # vpxor %xmm0, %xmm1, %xmm1 # 0 = j
vperm v3, $invlo, $invlo, v1 # vpshufb %xmm0, %xmm10, %xmm3 # 3 = 1/i
vperm v4, $invlo, $invlo, v0 # vpshufb %xmm1, %xmm10, %xmm4 # 4 = 1/j
vand v0, v0, v9
vxor v3, v3, v5 # vpxor %xmm5, %xmm3, %xmm3 # 3 = iak = 1/i + a/k
vxor v4, v4, v5 # vpxor %xmm5, %xmm4, %xmm4 # 4 = jak = 1/j + a/k
vperm v2, $invlo, v7, v3 # vpshufb %xmm3, %xmm10, %xmm2 # 2 = 1/iak
vmr v5, v6
lvx v6, r9, $key # vmovdqu (%r9), %xmm5
vperm v3, $invlo, v7, v4 # vpshufb %xmm4, %xmm10, %xmm3 # 3 = 1/jak
addi r9, r9, 16
vxor v2, v2, v0 # vpxor %xmm1, %xmm2, %xmm2 # 2 = io
?vperm v5, v5, v6, $keyperm # align round key
vxor v3, v3, v1 # vpxor %xmm0, %xmm3, %xmm3 # 3 = jo
bdnz Lenc_loop
# middle of last round
addi r10, r11, 0x80
# vmovdqa -0x60(%r10), %xmm4 # 3 : sbou .Lk_sbo
# vmovdqa -0x50(%r10), %xmm0 # 0 : sbot .Lk_sbo+16
vperm v4, $sbou, v7, v2 # vpshufb %xmm2, %xmm4, %xmm4 # 4 = sbou
lvx v1, r12, r10 # vmovdqa 0x40(%r11,%r10), %xmm1 # .Lk_sr[]
vperm v0, $sbot, v7, v3 # vpshufb %xmm3, %xmm0, %xmm0 # 0 = sb1t
vxor v4, v4, v5 # vpxor %xmm5, %xmm4, %xmm4 # 4 = sb1u + k
vxor v0, v0, v4 # vpxor %xmm4, %xmm0, %xmm0 # 0 = A
vperm v0, v0, v7, v1 # vpshufb %xmm1, %xmm0, %xmm0
blr
.long 0
.byte 0,12,0x14,0,0,0,0,0
.globl .vpaes_encrypt
.align 5
.vpaes_encrypt:
$STU $sp,-$FRAME($sp)
li r10,`15+6*$SIZE_T`
li r11,`31+6*$SIZE_T`
mflr r6
mfspr r7, 256 # save vrsave
stvx v20,r10,$sp
addi r10,r10,32
stvx v21,r11,$sp
addi r11,r11,32
stvx v22,r10,$sp
addi r10,r10,32
stvx v23,r11,$sp
addi r11,r11,32
stvx v24,r10,$sp
addi r10,r10,32
stvx v25,r11,$sp
addi r11,r11,32
stvx v26,r10,$sp
addi r10,r10,32
stvx v27,r11,$sp
addi r11,r11,32
stvx v28,r10,$sp
addi r10,r10,32
stvx v29,r11,$sp
addi r11,r11,32
stvx v30,r10,$sp
stvx v31,r11,$sp
stw r7,`$FRAME-4`($sp) # save vrsave
li r0, -1
$PUSH r6,`$FRAME+$LRSAVE`($sp)
mtspr 256, r0 # preserve all AltiVec registers
bl _vpaes_encrypt_preheat
?lvsl $inpperm, 0, $inp # prepare for unaligned access
lvx v0, 0, $inp
addi $inp, $inp, 15 # 15 is not a typo
?lvsr $outperm, 0, $out
?lvsl $keyperm, 0, $key # prepare for unaligned access
lvx $inptail, 0, $inp # redundant in aligned case
?vperm v0, v0, $inptail, $inpperm
bl _vpaes_encrypt_core
andi. r8, $out, 15
li r9, 16
beq Lenc_out_aligned
vperm v0, v0, v0, $outperm # rotate right/left
mtctr r9
Lenc_out_unaligned:
stvebx v0, 0, $out
addi $out, $out, 1
bdnz Lenc_out_unaligned
b Lenc_done
.align 4
Lenc_out_aligned:
stvx v0, 0, $out
Lenc_done:
li r10,`15+6*$SIZE_T`
li r11,`31+6*$SIZE_T`
mtlr r6
mtspr 256, r7 # restore vrsave
lvx v20,r10,$sp
addi r10,r10,32
lvx v21,r11,$sp
addi r11,r11,32
lvx v22,r10,$sp
addi r10,r10,32
lvx v23,r11,$sp
addi r11,r11,32
lvx v24,r10,$sp
addi r10,r10,32
lvx v25,r11,$sp
addi r11,r11,32
lvx v26,r10,$sp
addi r10,r10,32
lvx v27,r11,$sp
addi r11,r11,32
lvx v28,r10,$sp
addi r10,r10,32
lvx v29,r11,$sp
addi r11,r11,32
lvx v30,r10,$sp
lvx v31,r11,$sp
addi $sp,$sp,$FRAME
blr
.long 0
.byte 0,12,0x04,1,0x80,0,3,0
.long 0
.size .vpaes_encrypt,.-.vpaes_encrypt
.align 4
_vpaes_decrypt_preheat:
mflr r8
bl Lconsts
mtlr r8
li r11, 0xc0 # Lk_inv
li r10, 0xd0
li r9, 0x160 # Ldipt
li r8, 0x170
vxor v7, v7, v7 # 0x00..00
vspltisb v8,4 # 0x04..04
vspltisb v9,0x0f # 0x0f..0f
lvx $invlo, r12, r11
li r11, 0x180
lvx $invhi, r12, r10
li r10, 0x190
lvx $iptlo, r12, r9
li r9, 0x1a0
lvx $ipthi, r12, r8
li r8, 0x1b0
lvx $sbou, r12, r11
li r11, 0x1c0
lvx $sbot, r12, r10
li r10, 0x1d0
lvx $sb9u, r12, r9
li r9, 0x1e0
lvx $sb9t, r12, r8
li r8, 0x1f0
lvx $sbdu, r12, r11
li r11, 0x200
lvx $sbdt, r12, r10
li r10, 0x210
lvx $sbbu, r12, r9
lvx $sbbt, r12, r8
lvx $sbeu, r12, r11
lvx $sbet, r12, r10
blr
.long 0
.byte 0,12,0x14,0,0,0,0,0
##
## Decryption core
##
## Same API as encryption core.
##
.align 4
_vpaes_decrypt_core:
lwz r8, 240($key) # pull rounds
li r9, 16
lvx v5, 0, $key # vmovdqu (%r9), %xmm4 # round0 key
li r11, 0x30
lvx v6, r9, $key
addi r9, r9, 16
?vperm v5, v5, v6, $keyperm # align round key
vsrb v1, v0, v8 # vpsrlb \$4, %xmm0, %xmm0
vperm v0, $iptlo, $iptlo, v0 # vpshufb %xmm1, %xmm2, %xmm2
vperm v1, $ipthi, $ipthi, v1 # vpshufb %xmm0, %xmm1, %xmm0
vxor v0, v0, v5 # vpxor %xmm4, %xmm2, %xmm2
vxor v0, v0, v1 # vpxor %xmm2, %xmm0, %xmm0
mtctr r8
b Ldec_entry
.align 4
Ldec_loop:
#
# Inverse mix columns
#
lvx v0, r12, r11 # v5 and v0 are flipped
# vmovdqa -0x20(%r10),%xmm4 # 4 : sb9u
# vmovdqa -0x10(%r10),%xmm1 # 0 : sb9t
vperm v4, $sb9u, v7, v2 # vpshufb %xmm2, %xmm4, %xmm4 # 4 = sb9u
subi r11, r11, 16
vperm v1, $sb9t, v7, v3 # vpshufb %xmm3, %xmm1, %xmm1 # 0 = sb9t
andi. r11, r11, 0x30
vxor v5, v5, v4 # vpxor %xmm4, %xmm0, %xmm0
# vmovdqa 0x00(%r10),%xmm4 # 4 : sbdu
vxor v5, v5, v1 # vpxor %xmm1, %xmm0, %xmm0 # 0 = ch
# vmovdqa 0x10(%r10),%xmm1 # 0 : sbdt
vperm v4, $sbdu, v7, v2 # vpshufb %xmm2, %xmm4, %xmm4 # 4 = sbdu
vperm v5, v5, v7, v0 # vpshufb %xmm5, %xmm0, %xmm0 # MC ch
vperm v1, $sbdt, v7, v3 # vpshufb %xmm3, %xmm1, %xmm1 # 0 = sbdt
vxor v5, v5, v4 # vpxor %xmm4, %xmm0, %xmm0 # 4 = ch
# vmovdqa 0x20(%r10), %xmm4 # 4 : sbbu
vxor v5, v5, v1 # vpxor %xmm1, %xmm0, %xmm0 # 0 = ch
# vmovdqa 0x30(%r10), %xmm1 # 0 : sbbt
vperm v4, $sbbu, v7, v2 # vpshufb %xmm2, %xmm4, %xmm4 # 4 = sbbu
vperm v5, v5, v7, v0 # vpshufb %xmm5, %xmm0, %xmm0 # MC ch
vperm v1, $sbbt, v7, v3 # vpshufb %xmm3, %xmm1, %xmm1 # 0 = sbbt
vxor v5, v5, v4 # vpxor %xmm4, %xmm0, %xmm0 # 4 = ch
# vmovdqa 0x40(%r10), %xmm4 # 4 : sbeu
vxor v5, v5, v1 # vpxor %xmm1, %xmm0, %xmm0 # 0 = ch
# vmovdqa 0x50(%r10), %xmm1 # 0 : sbet
vperm v4, $sbeu, v7, v2 # vpshufb %xmm2, %xmm4, %xmm4 # 4 = sbeu
vperm v5, v5, v7, v0 # vpshufb %xmm5, %xmm0, %xmm0 # MC ch
vperm v1, $sbet, v7, v3 # vpshufb %xmm3, %xmm1, %xmm1 # 0 = sbet
vxor v0, v5, v4 # vpxor %xmm4, %xmm0, %xmm0 # 4 = ch
vxor v0, v0, v1 # vpxor %xmm1, %xmm0, %xmm0 # 0 = ch
Ldec_entry:
# top of round
vsrb v1, v0, v8 # vpsrlb \$4, %xmm0, %xmm0 # 1 = i
vperm v2, $invhi, $invhi, v0 # vpshufb %xmm1, %xmm11, %xmm2 # 2 = a/k
vxor v0, v0, v1 # vpxor %xmm0, %xmm1, %xmm1 # 0 = j
vperm v3, $invlo, $invlo, v1 # vpshufb %xmm0, %xmm10, %xmm3 # 3 = 1/i
vperm v4, $invlo, $invlo, v0 # vpshufb %xmm1, %xmm10, %xmm4 # 4 = 1/j
vand v0, v0, v9
vxor v3, v3, v2 # vpxor %xmm2, %xmm3, %xmm3 # 3 = iak = 1/i + a/k
vxor v4, v4, v2 # vpxor %xmm2, %xmm4, %xmm4 # 4 = jak = 1/j + a/k
vperm v2, $invlo, v7, v3 # vpshufb %xmm3, %xmm10, %xmm2 # 2 = 1/iak
vmr v5, v6
lvx v6, r9, $key # vmovdqu (%r9), %xmm0
vperm v3, $invlo, v7, v4 # vpshufb %xmm4, %xmm10, %xmm3 # 3 = 1/jak
addi r9, r9, 16
vxor v2, v2, v0 # vpxor %xmm1, %xmm2, %xmm2 # 2 = io
?vperm v5, v5, v6, $keyperm # align round key
vxor v3, v3, v1 # vpxor %xmm0, %xmm3, %xmm3 # 3 = jo
bdnz Ldec_loop
# middle of last round
addi r10, r11, 0x80
# vmovdqa 0x60(%r10), %xmm4 # 3 : sbou
vperm v4, $sbou, v7, v2 # vpshufb %xmm2, %xmm4, %xmm4 # 4 = sbou
# vmovdqa 0x70(%r10), %xmm1 # 0 : sbot
lvx v2, r12, r10 # vmovdqa -0x160(%r11), %xmm2 # .Lk_sr-.Lk_dsbd=-0x160
vperm v1, $sbot, v7, v3 # vpshufb %xmm3, %xmm1, %xmm1 # 0 = sb1t
vxor v4, v4, v5 # vpxor %xmm0, %xmm4, %xmm4 # 4 = sb1u + k
vxor v0, v1, v4 # vpxor %xmm4, %xmm1, %xmm0 # 0 = A
vperm v0, v0, v7, v2 # vpshufb %xmm2, %xmm0, %xmm0
blr
.long 0
.byte 0,12,0x14,0,0,0,0,0
.globl .vpaes_decrypt
.align 5
.vpaes_decrypt:
$STU $sp,-$FRAME($sp)
li r10,`15+6*$SIZE_T`
li r11,`31+6*$SIZE_T`
mflr r6
mfspr r7, 256 # save vrsave
stvx v20,r10,$sp
addi r10,r10,32
stvx v21,r11,$sp
addi r11,r11,32
stvx v22,r10,$sp
addi r10,r10,32
stvx v23,r11,$sp
addi r11,r11,32
stvx v24,r10,$sp
addi r10,r10,32
stvx v25,r11,$sp
addi r11,r11,32
stvx v26,r10,$sp
addi r10,r10,32
stvx v27,r11,$sp
addi r11,r11,32
stvx v28,r10,$sp
addi r10,r10,32
stvx v29,r11,$sp
addi r11,r11,32
stvx v30,r10,$sp
stvx v31,r11,$sp
stw r7,`$FRAME-4`($sp) # save vrsave
li r0, -1
$PUSH r6,`$FRAME+$LRSAVE`($sp)
mtspr 256, r0 # preserve all AltiVec registers
bl _vpaes_decrypt_preheat
?lvsl $inpperm, 0, $inp # prepare for unaligned access
lvx v0, 0, $inp
addi $inp, $inp, 15 # 15 is not a typo
?lvsr $outperm, 0, $out
?lvsl $keyperm, 0, $key
lvx $inptail, 0, $inp # redundant in aligned case
?vperm v0, v0, $inptail, $inpperm
bl _vpaes_decrypt_core
andi. r8, $out, 15
li r9, 16
beq Ldec_out_aligned
vperm v0, v0, v0, $outperm # rotate right/left
mtctr r9
Ldec_out_unaligned:
stvebx v0, 0, $out
addi $out, $out, 1
bdnz Ldec_out_unaligned
b Ldec_done
.align 4
Ldec_out_aligned:
stvx v0, 0, $out
Ldec_done:
li r10,`15+6*$SIZE_T`
li r11,`31+6*$SIZE_T`
mtlr r6
mtspr 256, r7 # restore vrsave
lvx v20,r10,$sp
addi r10,r10,32
lvx v21,r11,$sp
addi r11,r11,32
lvx v22,r10,$sp
addi r10,r10,32
lvx v23,r11,$sp
addi r11,r11,32
lvx v24,r10,$sp
addi r10,r10,32
lvx v25,r11,$sp
addi r11,r11,32
lvx v26,r10,$sp
addi r10,r10,32
lvx v27,r11,$sp
addi r11,r11,32
lvx v28,r10,$sp
addi r10,r10,32
lvx v29,r11,$sp
addi r11,r11,32
lvx v30,r10,$sp
lvx v31,r11,$sp
addi $sp,$sp,$FRAME
blr
.long 0
.byte 0,12,0x04,1,0x80,0,3,0
.long 0
.size .vpaes_decrypt,.-.vpaes_decrypt
.globl .vpaes_cbc_encrypt
.align 5
.vpaes_cbc_encrypt:
${UCMP}i r5,16
bltlr-
$STU $sp,-`($FRAME+2*$SIZE_T)`($sp)
mflr r0
li r10,`15+6*$SIZE_T`
li r11,`31+6*$SIZE_T`
mfspr r12, 256
stvx v20,r10,$sp
addi r10,r10,32
stvx v21,r11,$sp
addi r11,r11,32
stvx v22,r10,$sp
addi r10,r10,32
stvx v23,r11,$sp
addi r11,r11,32
stvx v24,r10,$sp
addi r10,r10,32
stvx v25,r11,$sp
addi r11,r11,32
stvx v26,r10,$sp
addi r10,r10,32
stvx v27,r11,$sp
addi r11,r11,32
stvx v28,r10,$sp
addi r10,r10,32
stvx v29,r11,$sp
addi r11,r11,32
stvx v30,r10,$sp
stvx v31,r11,$sp
stw r12,`$FRAME-4`($sp) # save vrsave
$PUSH r30,`$FRAME+$SIZE_T*0`($sp)
$PUSH r31,`$FRAME+$SIZE_T*1`($sp)
li r9, -16
$PUSH r0, `$FRAME+$SIZE_T*2+$LRSAVE`($sp)
and r30, r5, r9 # copy length&-16
andi. r9, $out, 15 # is $out aligned?
mr r5, r6 # copy pointer to key
mr r31, r7 # copy pointer to iv
li r6, -1
mcrf cr1, cr0 # put aside $out alignment flag
mr r7, r12 # copy vrsave
mtspr 256, r6 # preserve all AltiVec registers
lvx v24, 0, r31 # load [potentially unaligned] iv
li r9, 15
?lvsl $inpperm, 0, r31
lvx v25, r9, r31
?vperm v24, v24, v25, $inpperm
cmpwi r8, 0 # test direction
neg r8, $inp # prepare for unaligned access
vxor v7, v7, v7
?lvsl $keyperm, 0, $key
?lvsr $outperm, 0, $out
?lvsr $inpperm, 0, r8 # -$inp
vnor $outmask, v7, v7 # 0xff..ff
lvx $inptail, 0, $inp
?vperm $outmask, v7, $outmask, $outperm
addi $inp, $inp, 15 # 15 is not a typo
beq Lcbc_decrypt
bl _vpaes_encrypt_preheat
li r0, 16
beq cr1, Lcbc_enc_loop # $out is aligned
vmr v0, $inptail
lvx $inptail, 0, $inp
addi $inp, $inp, 16
?vperm v0, v0, $inptail, $inpperm
vxor v0, v0, v24 # ^= iv
bl _vpaes_encrypt_core
andi. r8, $out, 15
vmr v24, v0 # put aside iv
sub r9, $out, r8
vperm $outhead, v0, v0, $outperm # rotate right/left
Lcbc_enc_head:
stvebx $outhead, r8, r9
cmpwi r8, 15
addi r8, r8, 1
bne Lcbc_enc_head
sub. r30, r30, r0 # len -= 16
addi $out, $out, 16
beq Lcbc_unaligned_done
Lcbc_enc_loop:
vmr v0, $inptail
lvx $inptail, 0, $inp
addi $inp, $inp, 16
?vperm v0, v0, $inptail, $inpperm
vxor v0, v0, v24 # ^= iv
bl _vpaes_encrypt_core
vmr v24, v0 # put aside iv
sub. r30, r30, r0 # len -= 16
vperm v0, v0, v0, $outperm # rotate right/left
vsel v1, $outhead, v0, $outmask
vmr $outhead, v0
stvx v1, 0, $out
addi $out, $out, 16
bne Lcbc_enc_loop
b Lcbc_done
.align 5
Lcbc_decrypt:
bl _vpaes_decrypt_preheat
li r0, 16
beq cr1, Lcbc_dec_loop # $out is aligned
vmr v0, $inptail
lvx $inptail, 0, $inp
addi $inp, $inp, 16
?vperm v0, v0, $inptail, $inpperm
vmr v25, v0 # put aside input
bl _vpaes_decrypt_core
andi. r8, $out, 15
vxor v0, v0, v24 # ^= iv
vmr v24, v25
sub r9, $out, r8
vperm $outhead, v0, v0, $outperm # rotate right/left
Lcbc_dec_head:
stvebx $outhead, r8, r9
cmpwi r8, 15
addi r8, r8, 1
bne Lcbc_dec_head
sub. r30, r30, r0 # len -= 16
addi $out, $out, 16
beq Lcbc_unaligned_done
Lcbc_dec_loop:
vmr v0, $inptail
lvx $inptail, 0, $inp
addi $inp, $inp, 16
?vperm v0, v0, $inptail, $inpperm
vmr v25, v0 # put aside input
bl _vpaes_decrypt_core
vxor v0, v0, v24 # ^= iv
vmr v24, v25
sub. r30, r30, r0 # len -= 16
vperm v0, v0, v0, $outperm # rotate right/left
vsel v1, $outhead, v0, $outmask
vmr $outhead, v0
stvx v1, 0, $out
addi $out, $out, 16
bne Lcbc_dec_loop
Lcbc_done:
beq cr1, Lcbc_write_iv # $out is aligned
Lcbc_unaligned_done:
andi. r8, $out, 15
sub $out, $out, r8
li r9, 0
Lcbc_tail:
stvebx $outhead, r9, $out
addi r9, r9, 1
cmpw r9, r8
bne Lcbc_tail
Lcbc_write_iv:
neg r8, r31 # write [potentially unaligned] iv
li r10, 4
?lvsl $outperm, 0, r8
li r11, 8
li r12, 12
vperm v24, v24, v24, $outperm # rotate right/left
stvewx v24, 0, r31 # ivp is at least 32-bit aligned
stvewx v24, r10, r31
stvewx v24, r11, r31
stvewx v24, r12, r31
mtspr 256, r7 # restore vrsave
li r10,`15+6*$SIZE_T`
li r11,`31+6*$SIZE_T`
lvx v20,r10,$sp
addi r10,r10,32
lvx v21,r11,$sp
addi r11,r11,32
lvx v22,r10,$sp
addi r10,r10,32
lvx v23,r11,$sp
addi r11,r11,32
lvx v24,r10,$sp
addi r10,r10,32
lvx v25,r11,$sp
addi r11,r11,32
lvx v26,r10,$sp
addi r10,r10,32
lvx v27,r11,$sp
addi r11,r11,32
lvx v28,r10,$sp
addi r10,r10,32
lvx v29,r11,$sp
addi r11,r11,32
lvx v30,r10,$sp
lvx v31,r11,$sp
Lcbc_abort:
$POP r0, `$FRAME+$SIZE_T*2+$LRSAVE`($sp)
$POP r30,`$FRAME+$SIZE_T*0`($sp)
$POP r31,`$FRAME+$SIZE_T*1`($sp)
mtlr r0
addi $sp,$sp,`$FRAME+$SIZE_T*2`
blr
.long 0
.byte 0,12,0x04,1,0x80,2,6,0
.long 0
.size .vpaes_cbc_encrypt,.-.vpaes_cbc_encrypt
___
}
{
my ($inp,$bits,$out)=map("r$_",(3..5));
my $dir="cr1";
my ($invlo,$invhi,$iptlo,$ipthi,$rcon) = map("v$_",(10..13,24));
$code.=<<___;
########################################################
## ##
## AES key schedule ##
## ##
########################################################
.align 4
_vpaes_key_preheat:
mflr r8
bl Lconsts
mtlr r8
li r11, 0xc0 # Lk_inv
li r10, 0xd0
li r9, 0xe0 # L_ipt
li r8, 0xf0
vspltisb v8,4 # 0x04..04
vxor v9,v9,v9 # 0x00..00
lvx $invlo, r12, r11 # Lk_inv
li r11, 0x120
lvx $invhi, r12, r10
li r10, 0x130
lvx $iptlo, r12, r9 # Lk_ipt
li r9, 0x220
lvx $ipthi, r12, r8
li r8, 0x230
lvx v14, r12, r11 # Lk_sb1
li r11, 0x240
lvx v15, r12, r10
li r10, 0x250
lvx v16, r12, r9 # Lk_dksd
li r9, 0x260
lvx v17, r12, r8
li r8, 0x270
lvx v18, r12, r11 # Lk_dksb
li r11, 0x280
lvx v19, r12, r10
li r10, 0x290
lvx v20, r12, r9 # Lk_dkse
li r9, 0x2a0
lvx v21, r12, r8
li r8, 0x2b0
lvx v22, r12, r11 # Lk_dks9
lvx v23, r12, r10
lvx v24, r12, r9 # Lk_rcon
lvx v25, 0, r12 # Lk_mc_forward[0]
lvx v26, r12, r8 # Lks63
blr
.long 0
.byte 0,12,0x14,0,0,0,0,0
.align 4
_vpaes_schedule_core:
mflr r7
bl _vpaes_key_preheat # load the tables
#lvx v0, 0, $inp # vmovdqu (%rdi), %xmm0 # load key (unaligned)
neg r8, $inp # prepare for unaligned access
lvx v0, 0, $inp
addi $inp, $inp, 15 # 15 is not typo
?lvsr $inpperm, 0, r8 # -$inp
lvx v6, 0, $inp # v6 serves as inptail
addi $inp, $inp, 8
?vperm v0, v0, v6, $inpperm
# input transform
vmr v3, v0 # vmovdqa %xmm0, %xmm3
bl _vpaes_schedule_transform
vmr v7, v0 # vmovdqa %xmm0, %xmm7
bne $dir, Lschedule_am_decrypting
# encrypting, output zeroth round key after transform
li r8, 0x30 # mov \$0x30,%r8d
li r9, 4
li r10, 8
li r11, 12
?lvsr $outperm, 0, $out # prepare for unaligned access
vnor $outmask, v9, v9 # 0xff..ff
?vperm $outmask, v9, $outmask, $outperm
#stvx v0, 0, $out # vmovdqu %xmm0, (%rdx)
vperm $outhead, v0, v0, $outperm # rotate right/left
stvewx $outhead, 0, $out # some are superfluous
stvewx $outhead, r9, $out
stvewx $outhead, r10, $out
addi r10, r12, 0x80 # lea .Lk_sr(%rip),%r10
stvewx $outhead, r11, $out
b Lschedule_go
Lschedule_am_decrypting:
srwi r8, $bits, 1 # shr \$1,%r8d
andi. r8, r8, 32 # and \$32,%r8d
xori r8, r8, 32 # xor \$32,%r8d # nbits==192?0:32
addi r10, r12, 0x80 # lea .Lk_sr(%rip),%r10
# decrypting, output zeroth round key after shiftrows
lvx v1, r8, r10 # vmovdqa (%r8,%r10), %xmm1
li r9, 4
li r10, 8
li r11, 12
vperm v4, v3, v3, v1 # vpshufb %xmm1, %xmm3, %xmm3
neg r0, $out # prepare for unaligned access
?lvsl $outperm, 0, r0
vnor $outmask, v9, v9 # 0xff..ff
?vperm $outmask, $outmask, v9, $outperm
#stvx v4, 0, $out # vmovdqu %xmm3, (%rdx)
vperm $outhead, v4, v4, $outperm # rotate right/left
stvewx $outhead, 0, $out # some are superfluous
stvewx $outhead, r9, $out
stvewx $outhead, r10, $out
addi r10, r12, 0x80 # lea .Lk_sr(%rip),%r10
stvewx $outhead, r11, $out
addi $out, $out, 15 # 15 is not typo
xori r8, r8, 0x30 # xor \$0x30, %r8
Lschedule_go:
cmplwi $bits, 192 # cmp \$192, %esi
bgt Lschedule_256
beq Lschedule_192
# 128: fall though
##
## .schedule_128
##
## 128-bit specific part of key schedule.
##
## This schedule is really simple, because all its parts
## are accomplished by the subroutines.
##
Lschedule_128:
li r0, 10 # mov \$10, %esi
mtctr r0
Loop_schedule_128:
bl _vpaes_schedule_round
bdz Lschedule_mangle_last # dec %esi
bl _vpaes_schedule_mangle # write output
b Loop_schedule_128
##
## .aes_schedule_192
##
## 192-bit specific part of key schedule.
##
## The main body of this schedule is the same as the 128-bit
## schedule, but with more smearing. The long, high side is
## stored in %xmm7 as before, and the short, low side is in
## the high bits of %xmm6.
##
## This schedule is somewhat nastier, however, because each
## round produces 192 bits of key material, or 1.5 round keys.
## Therefore, on each cycle we do 2 rounds and produce 3 round
## keys.
##
.align 4
Lschedule_192:
li r0, 4 # mov \$4, %esi
lvx v0, 0, $inp
?vperm v0, v6, v0, $inpperm
?vsldoi v0, v3, v0, 8 # vmovdqu 8(%rdi),%xmm0 # load key part 2 (very unaligned)
bl _vpaes_schedule_transform # input transform
?vsldoi v6, v0, v9, 8
?vsldoi v6, v9, v6, 8 # clobber "low" side with zeros
mtctr r0
Loop_schedule_192:
bl _vpaes_schedule_round
?vsldoi v0, v6, v0, 8 # vpalignr \$8,%xmm6,%xmm0,%xmm0
bl _vpaes_schedule_mangle # save key n
bl _vpaes_schedule_192_smear
bl _vpaes_schedule_mangle # save key n+1
bl _vpaes_schedule_round
bdz Lschedule_mangle_last # dec %esi
bl _vpaes_schedule_mangle # save key n+2
bl _vpaes_schedule_192_smear
b Loop_schedule_192
##
## .aes_schedule_256
##
## 256-bit specific part of key schedule.
##
## The structure here is very similar to the 128-bit
## schedule, but with an additional "low side" in
## %xmm6. The low side's rounds are the same as the
## high side's, except no rcon and no rotation.
##
.align 4
Lschedule_256:
li r0, 7 # mov \$7, %esi
addi $inp, $inp, 8
lvx v0, 0, $inp # vmovdqu 16(%rdi),%xmm0 # load key part 2 (unaligned)
?vperm v0, v6, v0, $inpperm
bl _vpaes_schedule_transform # input transform
mtctr r0
Loop_schedule_256:
bl _vpaes_schedule_mangle # output low result
vmr v6, v0 # vmovdqa %xmm0, %xmm6 # save cur_lo in xmm6
# high round
bl _vpaes_schedule_round
bdz Lschedule_mangle_last # dec %esi
bl _vpaes_schedule_mangle
# low round. swap xmm7 and xmm6
?vspltw v0, v0, 3 # vpshufd \$0xFF, %xmm0, %xmm0
vmr v5, v7 # vmovdqa %xmm7, %xmm5
vmr v7, v6 # vmovdqa %xmm6, %xmm7
bl _vpaes_schedule_low_round
vmr v7, v5 # vmovdqa %xmm5, %xmm7
b Loop_schedule_256
##
## .aes_schedule_mangle_last
##
## Mangler for last round of key schedule
## Mangles %xmm0
## when encrypting, outputs out(%xmm0) ^ 63
## when decrypting, outputs unskew(%xmm0)
##
## Always called right before return... jumps to cleanup and exits
##
.align 4
Lschedule_mangle_last:
# schedule last round key from xmm0
li r11, 0x2e0 # lea .Lk_deskew(%rip),%r11
li r9, 0x2f0
bne $dir, Lschedule_mangle_last_dec
# encrypting
lvx v1, r8, r10 # vmovdqa (%r8,%r10),%xmm1
li r11, 0x2c0 # lea .Lk_opt(%rip), %r11 # prepare to output transform
li r9, 0x2d0 # prepare to output transform
vperm v0, v0, v0, v1 # vpshufb %xmm1, %xmm0, %xmm0 # output permute
lvx $iptlo, r11, r12 # reload $ipt
lvx $ipthi, r9, r12
addi $out, $out, 16 # add \$16, %rdx
vxor v0, v0, v26 # vpxor .Lk_s63(%rip), %xmm0, %xmm0
bl _vpaes_schedule_transform # output transform
#stvx v0, r0, $out # vmovdqu %xmm0, (%rdx) # save last key
vperm v0, v0, v0, $outperm # rotate right/left
li r10, 4
vsel v2, $outhead, v0, $outmask
li r11, 8
stvx v2, 0, $out
li r12, 12
stvewx v0, 0, $out # some (or all) are redundant
stvewx v0, r10, $out
stvewx v0, r11, $out
stvewx v0, r12, $out
b Lschedule_mangle_done
.align 4
Lschedule_mangle_last_dec:
lvx $iptlo, r11, r12 # reload $ipt
lvx $ipthi, r9, r12
addi $out, $out, -16 # add \$-16, %rdx
vxor v0, v0, v26 # vpxor .Lk_s63(%rip), %xmm0, %xmm0
bl _vpaes_schedule_transform # output transform
#stvx v0, r0, $out # vmovdqu %xmm0, (%rdx) # save last key
addi r9, $out, -15 # -15 is not typo
vperm v0, v0, v0, $outperm # rotate right/left
li r10, 4
vsel v2, $outhead, v0, $outmask
li r11, 8
stvx v2, 0, $out
li r12, 12
stvewx v0, 0, r9 # some (or all) are redundant
stvewx v0, r10, r9
stvewx v0, r11, r9
stvewx v0, r12, r9
Lschedule_mangle_done:
mtlr r7
# cleanup
vxor v0, v0, v0 # vpxor %xmm0, %xmm0, %xmm0
vxor v1, v1, v1 # vpxor %xmm1, %xmm1, %xmm1
vxor v2, v2, v2 # vpxor %xmm2, %xmm2, %xmm2
vxor v3, v3, v3 # vpxor %xmm3, %xmm3, %xmm3
vxor v4, v4, v4 # vpxor %xmm4, %xmm4, %xmm4
vxor v5, v5, v5 # vpxor %xmm5, %xmm5, %xmm5
vxor v6, v6, v6 # vpxor %xmm6, %xmm6, %xmm6
vxor v7, v7, v7 # vpxor %xmm7, %xmm7, %xmm7
blr
.long 0
.byte 0,12,0x14,0,0,0,0,0
##
## .aes_schedule_192_smear
##
## Smear the short, low side in the 192-bit key schedule.
##
## Inputs:
## %xmm7: high side, b a x y
## %xmm6: low side, d c 0 0
## %xmm13: 0
##
## Outputs:
## %xmm6: b+c+d b+c 0 0
## %xmm0: b+c+d b+c b a
##
.align 4
_vpaes_schedule_192_smear:
?vspltw v0, v7, 3
?vsldoi v1, v9, v6, 12 # vpshufd \$0x80, %xmm6, %xmm1 # d c 0 0 -> c 0 0 0
?vsldoi v0, v7, v0, 8 # vpshufd \$0xFE, %xmm7, %xmm0 # b a _ _ -> b b b a
vxor v6, v6, v1 # vpxor %xmm1, %xmm6, %xmm6 # -> c+d c 0 0
vxor v6, v6, v0 # vpxor %xmm0, %xmm6, %xmm6 # -> b+c+d b+c b a
vmr v0, v6
?vsldoi v6, v6, v9, 8
?vsldoi v6, v9, v6, 8 # clobber low side with zeros
blr
.long 0
.byte 0,12,0x14,0,0,0,0,0
##
## .aes_schedule_round
##
## Runs one main round of the key schedule on %xmm0, %xmm7
##
## Specifically, runs subbytes on the high dword of %xmm0
## then rotates it by one byte and xors into the low dword of
## %xmm7.
##
## Adds rcon from low byte of %xmm8, then rotates %xmm8 for
## next rcon.
##
## Smears the dwords of %xmm7 by xoring the low into the
## second low, result into third, result into highest.
##
## Returns results in %xmm7 = %xmm0.
## Clobbers %xmm1-%xmm4, %r11.
##
.align 4
_vpaes_schedule_round:
# extract rcon from xmm8
#vxor v4, v4, v4 # vpxor %xmm4, %xmm4, %xmm4
?vsldoi v1, $rcon, v9, 15 # vpalignr \$15, %xmm8, %xmm4, %xmm1
?vsldoi $rcon, $rcon, $rcon, 15 # vpalignr \$15, %xmm8, %xmm8, %xmm8
vxor v7, v7, v1 # vpxor %xmm1, %xmm7, %xmm7
# rotate
?vspltw v0, v0, 3 # vpshufd \$0xFF, %xmm0, %xmm0
?vsldoi v0, v0, v0, 1 # vpalignr \$1, %xmm0, %xmm0, %xmm0
# fall through...
# low round: same as high round, but no rotation and no rcon.
_vpaes_schedule_low_round:
# smear xmm7
?vsldoi v1, v9, v7, 12 # vpslldq \$4, %xmm7, %xmm1
vxor v7, v7, v1 # vpxor %xmm1, %xmm7, %xmm7
vspltisb v1, 0x0f # 0x0f..0f
?vsldoi v4, v9, v7, 8 # vpslldq \$8, %xmm7, %xmm4
# subbytes
vand v1, v1, v0 # vpand %xmm9, %xmm0, %xmm1 # 0 = k
vsrb v0, v0, v8 # vpsrlb \$4, %xmm0, %xmm0 # 1 = i
vxor v7, v7, v4 # vpxor %xmm4, %xmm7, %xmm7
vperm v2, $invhi, v9, v1 # vpshufb %xmm1, %xmm11, %xmm2 # 2 = a/k
vxor v1, v1, v0 # vpxor %xmm0, %xmm1, %xmm1 # 0 = j
vperm v3, $invlo, v9, v0 # vpshufb %xmm0, %xmm10, %xmm3 # 3 = 1/i
vxor v3, v3, v2 # vpxor %xmm2, %xmm3, %xmm3 # 3 = iak = 1/i + a/k
vperm v4, $invlo, v9, v1 # vpshufb %xmm1, %xmm10, %xmm4 # 4 = 1/j
vxor v7, v7, v26 # vpxor .Lk_s63(%rip), %xmm7, %xmm7
vperm v3, $invlo, v9, v3 # vpshufb %xmm3, %xmm10, %xmm3 # 2 = 1/iak
vxor v4, v4, v2 # vpxor %xmm2, %xmm4, %xmm4 # 4 = jak = 1/j + a/k
vperm v2, $invlo, v9, v4 # vpshufb %xmm4, %xmm10, %xmm2 # 3 = 1/jak
vxor v3, v3, v1 # vpxor %xmm1, %xmm3, %xmm3 # 2 = io
vxor v2, v2, v0 # vpxor %xmm0, %xmm2, %xmm2 # 3 = jo
vperm v4, v15, v9, v3 # vpshufb %xmm3, %xmm13, %xmm4 # 4 = sbou
vperm v1, v14, v9, v2 # vpshufb %xmm2, %xmm12, %xmm1 # 0 = sb1t
vxor v1, v1, v4 # vpxor %xmm4, %xmm1, %xmm1 # 0 = sbox output
# add in smeared stuff
vxor v0, v1, v7 # vpxor %xmm7, %xmm1, %xmm0
vxor v7, v1, v7 # vmovdqa %xmm0, %xmm7
blr
.long 0
.byte 0,12,0x14,0,0,0,0,0
##
## .aes_schedule_transform
##
## Linear-transform %xmm0 according to tables at (%r11)
##
## Requires that %xmm9 = 0x0F0F... as in preheat
## Output in %xmm0
## Clobbers %xmm2
##
.align 4
_vpaes_schedule_transform:
#vand v1, v0, v9 # vpand %xmm9, %xmm0, %xmm1
vsrb v2, v0, v8 # vpsrlb \$4, %xmm0, %xmm0
# vmovdqa (%r11), %xmm2 # lo
vperm v0, $iptlo, $iptlo, v0 # vpshufb %xmm1, %xmm2, %xmm2
# vmovdqa 16(%r11), %xmm1 # hi
vperm v2, $ipthi, $ipthi, v2 # vpshufb %xmm0, %xmm1, %xmm0
vxor v0, v0, v2 # vpxor %xmm2, %xmm0, %xmm0
blr
.long 0
.byte 0,12,0x14,0,0,0,0,0
##
## .aes_schedule_mangle
##
## Mangle xmm0 from (basis-transformed) standard version
## to our version.
##
## On encrypt,
## xor with 0x63
## multiply by circulant 0,1,1,1
## apply shiftrows transform
##
## On decrypt,
## xor with 0x63
## multiply by "inverse mixcolumns" circulant E,B,D,9
## deskew
## apply shiftrows transform
##
##
## Writes out to (%rdx), and increments or decrements it
## Keeps track of round number mod 4 in %r8
## Preserves xmm0
## Clobbers xmm1-xmm5
##
.align 4
_vpaes_schedule_mangle:
#vmr v4, v0 # vmovdqa %xmm0, %xmm4 # save xmm0 for later
# vmovdqa .Lk_mc_forward(%rip),%xmm5
bne $dir, Lschedule_mangle_dec
# encrypting
vxor v4, v0, v26 # vpxor .Lk_s63(%rip), %xmm0, %xmm4
addi $out, $out, 16 # add \$16, %rdx
vperm v4, v4, v4, v25 # vpshufb %xmm5, %xmm4, %xmm4
vperm v1, v4, v4, v25 # vpshufb %xmm5, %xmm4, %xmm1
vperm v3, v1, v1, v25 # vpshufb %xmm5, %xmm1, %xmm3
vxor v4, v4, v1 # vpxor %xmm1, %xmm4, %xmm4
lvx v1, r8, r10 # vmovdqa (%r8,%r10), %xmm1
vxor v3, v3, v4 # vpxor %xmm4, %xmm3, %xmm3
vperm v3, v3, v3, v1 # vpshufb %xmm1, %xmm3, %xmm3
addi r8, r8, -16 # add \$-16, %r8
andi. r8, r8, 0x30 # and \$0x30, %r8
#stvx v3, 0, $out # vmovdqu %xmm3, (%rdx)
vperm v1, v3, v3, $outperm # rotate right/left
vsel v2, $outhead, v1, $outmask
vmr $outhead, v1
stvx v2, 0, $out
blr
.align 4
Lschedule_mangle_dec:
# inverse mix columns
# lea .Lk_dksd(%rip),%r11
vsrb v1, v0, v8 # vpsrlb \$4, %xmm4, %xmm1 # 1 = hi
#and v4, v0, v9 # vpand %xmm9, %xmm4, %xmm4 # 4 = lo
# vmovdqa 0x00(%r11), %xmm2
vperm v2, v16, v16, v0 # vpshufb %xmm4, %xmm2, %xmm2
# vmovdqa 0x10(%r11), %xmm3
vperm v3, v17, v17, v1 # vpshufb %xmm1, %xmm3, %xmm3
vxor v3, v3, v2 # vpxor %xmm2, %xmm3, %xmm3
vperm v3, v3, v9, v25 # vpshufb %xmm5, %xmm3, %xmm3
# vmovdqa 0x20(%r11), %xmm2
vperm v2, v18, v18, v0 # vpshufb %xmm4, %xmm2, %xmm2
vxor v2, v2, v3 # vpxor %xmm3, %xmm2, %xmm2
# vmovdqa 0x30(%r11), %xmm3
vperm v3, v19, v19, v1 # vpshufb %xmm1, %xmm3, %xmm3
vxor v3, v3, v2 # vpxor %xmm2, %xmm3, %xmm3
vperm v3, v3, v9, v25 # vpshufb %xmm5, %xmm3, %xmm3
# vmovdqa 0x40(%r11), %xmm2
vperm v2, v20, v20, v0 # vpshufb %xmm4, %xmm2, %xmm2
vxor v2, v2, v3 # vpxor %xmm3, %xmm2, %xmm2
# vmovdqa 0x50(%r11), %xmm3
vperm v3, v21, v21, v1 # vpshufb %xmm1, %xmm3, %xmm3
vxor v3, v3, v2 # vpxor %xmm2, %xmm3, %xmm3
# vmovdqa 0x60(%r11), %xmm2
vperm v2, v22, v22, v0 # vpshufb %xmm4, %xmm2, %xmm2
vperm v3, v3, v9, v25 # vpshufb %xmm5, %xmm3, %xmm3
# vmovdqa 0x70(%r11), %xmm4
vperm v4, v23, v23, v1 # vpshufb %xmm1, %xmm4, %xmm4
lvx v1, r8, r10 # vmovdqa (%r8,%r10), %xmm1
vxor v2, v2, v3 # vpxor %xmm3, %xmm2, %xmm2
vxor v3, v4, v2 # vpxor %xmm2, %xmm4, %xmm3
addi $out, $out, -16 # add \$-16, %rdx
vperm v3, v3, v3, v1 # vpshufb %xmm1, %xmm3, %xmm3
addi r8, r8, -16 # add \$-16, %r8
andi. r8, r8, 0x30 # and \$0x30, %r8
#stvx v3, 0, $out # vmovdqu %xmm3, (%rdx)
vperm v1, v3, v3, $outperm # rotate right/left
vsel v2, $outhead, v1, $outmask
vmr $outhead, v1
stvx v2, 0, $out
blr
.long 0
.byte 0,12,0x14,0,0,0,0,0
.globl .vpaes_set_encrypt_key
.align 5
.vpaes_set_encrypt_key:
$STU $sp,-$FRAME($sp)
li r10,`15+6*$SIZE_T`
li r11,`31+6*$SIZE_T`
mflr r0
mfspr r6, 256 # save vrsave
stvx v20,r10,$sp
addi r10,r10,32
stvx v21,r11,$sp
addi r11,r11,32
stvx v22,r10,$sp
addi r10,r10,32
stvx v23,r11,$sp
addi r11,r11,32
stvx v24,r10,$sp
addi r10,r10,32
stvx v25,r11,$sp
addi r11,r11,32
stvx v26,r10,$sp
addi r10,r10,32
stvx v27,r11,$sp
addi r11,r11,32
stvx v28,r10,$sp
addi r10,r10,32
stvx v29,r11,$sp
addi r11,r11,32
stvx v30,r10,$sp
stvx v31,r11,$sp
stw r6,`$FRAME-4`($sp) # save vrsave
li r7, -1
$PUSH r0, `$FRAME+$LRSAVE`($sp)
mtspr 256, r7 # preserve all AltiVec registers
srwi r9, $bits, 5 # shr \$5,%eax
addi r9, r9, 6 # add \$5,%eax
stw r9, 240($out) # mov %eax,240(%rdx) # AES_KEY->rounds = nbits/32+5;
cmplw $dir, $bits, $bits # set encrypt direction
li r8, 0x30 # mov \$0x30,%r8d
bl _vpaes_schedule_core
$POP r0, `$FRAME+$LRSAVE`($sp)
li r10,`15+6*$SIZE_T`
li r11,`31+6*$SIZE_T`
mtspr 256, r6 # restore vrsave
mtlr r0
xor r3, r3, r3
lvx v20,r10,$sp
addi r10,r10,32
lvx v21,r11,$sp
addi r11,r11,32
lvx v22,r10,$sp
addi r10,r10,32
lvx v23,r11,$sp
addi r11,r11,32
lvx v24,r10,$sp
addi r10,r10,32
lvx v25,r11,$sp
addi r11,r11,32
lvx v26,r10,$sp
addi r10,r10,32
lvx v27,r11,$sp
addi r11,r11,32
lvx v28,r10,$sp
addi r10,r10,32
lvx v29,r11,$sp
addi r11,r11,32
lvx v30,r10,$sp
lvx v31,r11,$sp
addi $sp,$sp,$FRAME
blr
.long 0
.byte 0,12,0x04,1,0x80,0,3,0
.long 0
.size .vpaes_set_encrypt_key,.-.vpaes_set_encrypt_key
.globl .vpaes_set_decrypt_key
.align 4
.vpaes_set_decrypt_key:
$STU $sp,-$FRAME($sp)
li r10,`15+6*$SIZE_T`
li r11,`31+6*$SIZE_T`
mflr r0
mfspr r6, 256 # save vrsave
stvx v20,r10,$sp
addi r10,r10,32
stvx v21,r11,$sp
addi r11,r11,32
stvx v22,r10,$sp
addi r10,r10,32
stvx v23,r11,$sp
addi r11,r11,32
stvx v24,r10,$sp
addi r10,r10,32
stvx v25,r11,$sp
addi r11,r11,32
stvx v26,r10,$sp
addi r10,r10,32
stvx v27,r11,$sp
addi r11,r11,32
stvx v28,r10,$sp
addi r10,r10,32
stvx v29,r11,$sp
addi r11,r11,32
stvx v30,r10,$sp
stvx v31,r11,$sp
stw r6,`$FRAME-4`($sp) # save vrsave
li r7, -1
$PUSH r0, `$FRAME+$LRSAVE`($sp)
mtspr 256, r7 # preserve all AltiVec registers
srwi r9, $bits, 5 # shr \$5,%eax
addi r9, r9, 6 # add \$5,%eax
stw r9, 240($out) # mov %eax,240(%rdx) # AES_KEY->rounds = nbits/32+5;
slwi r9, r9, 4 # shl \$4,%eax
add $out, $out, r9 # lea (%rdx,%rax),%rdx
cmplwi $dir, $bits, 0 # set decrypt direction
srwi r8, $bits, 1 # shr \$1,%r8d
andi. r8, r8, 32 # and \$32,%r8d
xori r8, r8, 32 # xor \$32,%r8d # nbits==192?0:32
bl _vpaes_schedule_core
$POP r0, `$FRAME+$LRSAVE`($sp)
li r10,`15+6*$SIZE_T`
li r11,`31+6*$SIZE_T`
mtspr 256, r6 # restore vrsave
mtlr r0
xor r3, r3, r3
lvx v20,r10,$sp
addi r10,r10,32
lvx v21,r11,$sp
addi r11,r11,32
lvx v22,r10,$sp
addi r10,r10,32
lvx v23,r11,$sp
addi r11,r11,32
lvx v24,r10,$sp
addi r10,r10,32
lvx v25,r11,$sp
addi r11,r11,32
lvx v26,r10,$sp
addi r10,r10,32
lvx v27,r11,$sp
addi r11,r11,32
lvx v28,r10,$sp
addi r10,r10,32
lvx v29,r11,$sp
addi r11,r11,32
lvx v30,r10,$sp
lvx v31,r11,$sp
addi $sp,$sp,$FRAME
blr
.long 0
.byte 0,12,0x04,1,0x80,0,3,0
.long 0
.size .vpaes_set_decrypt_key,.-.vpaes_set_decrypt_key
___
}
my $consts=1;
foreach (split("\n",$code)) {
s/\`([^\`]*)\`/eval $1/geo;
# constants table endian-specific conversion
if ($consts && m/\.long\s+(.+)\s+(\?[a-z]*)$/o) {
my $conv=$2;
my @bytes=();
# convert to endian-agnostic format
foreach (split(/,\s+/,$1)) {
my $l = /^0/?oct:int;
push @bytes,($l>>24)&0xff,($l>>16)&0xff,($l>>8)&0xff,$l&0xff;
}
# little-endian conversion
if ($flavour =~ /le$/o) {
SWITCH: for($conv) {
/\?inv/ && do { @bytes=map($_^0xf,@bytes); last; };
/\?rev/ && do { @bytes=reverse(@bytes); last; };
}
}
#emit
print ".byte\t",join(',',map (sprintf("0x%02x",$_),@bytes)),"\n";
next;
}
$consts=0 if (m/Lconsts:/o); # end of table
# instructions prefixed with '?' are endian-specific and need
# to be adjusted accordingly...
if ($flavour =~ /le$/o) { # little-endian
s/\?lvsr/lvsl/o or
s/\?lvsl/lvsr/o or
s/\?(vperm\s+v[0-9]+,\s*)(v[0-9]+,\s*)(v[0-9]+,\s*)(v[0-9]+)/$1$3$2$4/o or
s/\?(vsldoi\s+v[0-9]+,\s*)(v[0-9]+,)\s*(v[0-9]+,\s*)([0-9]+)/$1$3$2 16-$4/o or
s/\?(vspltw\s+v[0-9]+,\s*)(v[0-9]+,)\s*([0-9])/$1$2 3-$3/o;
} else { # big-endian
s/\?([a-z]+)/$1/o;
}
print $_,"\n";
}
close STDOUT;