440 lines
14 KiB
Raku
Executable file
440 lines
14 KiB
Raku
Executable file
#!/usr/bin/env perl
|
|
# Copyright 2017 The OpenSSL Project Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the OpenSSL license (the "License"). You may not use
|
|
# this file except in compliance with the License. You can obtain a copy
|
|
# in the file LICENSE in the source distribution or at
|
|
# https://www.openssl.org/source/license.html
|
|
#
|
|
# ====================================================================
|
|
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
|
|
# project. The module is, however, dual licensed under OpenSSL and
|
|
# CRYPTOGAMS licenses depending on where you obtain it. For further
|
|
# details see http://www.openssl.org/~appro/cryptogams/.
|
|
# ====================================================================
|
|
#
|
|
# Keccak-1600 for x86 MMX.
|
|
#
|
|
# June 2017.
|
|
#
|
|
# Below code is KECCAK_2X implementation (see sha/keccak1600.c) with
|
|
# C[5] held in register bank and D[5] offloaded to memory. Though
|
|
# instead of actually unrolling the loop pair-wise I simply flip
|
|
# pointers to T[][] and A[][] and the end of round. Since number of
|
|
# rounds is even, last round writes to A[][] and everything works out.
|
|
# It's argued that MMX is the only code path meaningful to implement
|
|
# for x86. This is because non-MMX-capable processors is an extinct
|
|
# breed, and they as well can lurk executing compiler-generated code.
|
|
# For reference gcc-5.x-generated KECCAK_2X code takes 89 cycles per
|
|
# processed byte on Pentium. Which is fair result. But older compilers
|
|
# produce worse code. On the other hand one can wonder why not 128-bit
|
|
# SSE2? Well, SSE2 won't provide double improvement, rather far from
|
|
# that, if any at all on some processors, because it will take extra
|
|
# permutations and inter-bank data trasfers. Besides, contemporary
|
|
# CPUs are better off executing 64-bit code, and it makes lesser sense
|
|
# to invest into fancy 32-bit code. And the decision doesn't seem to
|
|
# be inadequate, if one compares below results to "64-bit platforms in
|
|
# 32-bit mode" SIMD data points available at
|
|
# http://keccak.noekeon.org/sw_performance.html.
|
|
#
|
|
########################################################################
|
|
# Numbers are cycles per processed byte out of large message.
|
|
#
|
|
# r=1088(i)
|
|
#
|
|
# PIII 30/+150%
|
|
# Pentium M 27/+150%
|
|
# P4 40/+85%
|
|
# Core 2 19/+170%
|
|
# Sandy Bridge(ii) 18/+140%
|
|
# Atom 33/+180%
|
|
# Silvermont(ii) 30/+180%
|
|
# VIA Nano(ii) 43/+60%
|
|
# Sledgehammer(ii)(iii) 24/+130%
|
|
#
|
|
# (i) Corresponds to SHA3-256. Numbers after slash are improvement
|
|
# coefficients over KECCAK_2X [with bit interleave and lane
|
|
# complementing] position-independent *scalar* code generated
|
|
# by gcc-5.x. It's not exactly fair comparison, but it's a
|
|
# datapoint...
|
|
# (ii) 64-bit processor executing 32-bit code.
|
|
# (iii) Result is considered to be representative even for older AMD
|
|
# processors.
|
|
|
|
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
|
|
push(@INC,"${dir}","${dir}../../perlasm");
|
|
require "x86asm.pl";
|
|
|
|
$output=pop;
|
|
open STDOUT,">$output";
|
|
|
|
&asm_init($ARGV[0],$ARGV[$#ARGV] eq "386");
|
|
|
|
my @C = map("mm$_",(0..4));
|
|
my @T = map("mm$_",(5..7));
|
|
my @A = map([ 8*$_-100, 8*($_+1)-100, 8*($_+2)-100,
|
|
8*($_+3)-100, 8*($_+4)-100 ], (0,5,10,15,20));
|
|
my @D = map(8*$_+4, (0..4));
|
|
my @rhotates = ([ 0, 1, 62, 28, 27 ],
|
|
[ 36, 44, 6, 55, 20 ],
|
|
[ 3, 10, 43, 25, 39 ],
|
|
[ 41, 45, 15, 21, 8 ],
|
|
[ 18, 2, 61, 56, 14 ]);
|
|
|
|
&static_label("iotas");
|
|
|
|
&function_begin_B("_KeccakF1600");
|
|
&movq (@C[0],&QWP($A[4][0],"esi"));
|
|
&movq (@C[1],&QWP($A[4][1],"esi"));
|
|
&movq (@C[2],&QWP($A[4][2],"esi"));
|
|
&movq (@C[3],&QWP($A[4][3],"esi"));
|
|
&movq (@C[4],&QWP($A[4][4],"esi"));
|
|
|
|
&mov ("ecx",24); # loop counter
|
|
&jmp (&label("loop"));
|
|
|
|
&set_label("loop",16);
|
|
######################################### Theta
|
|
&pxor (@C[0],&QWP($A[0][0],"esi"));
|
|
&pxor (@C[1],&QWP($A[0][1],"esi"));
|
|
&pxor (@C[2],&QWP($A[0][2],"esi"));
|
|
&pxor (@C[3],&QWP($A[0][3],"esi"));
|
|
&pxor (@C[4],&QWP($A[0][4],"esi"));
|
|
|
|
&pxor (@C[0],&QWP($A[1][0],"esi"));
|
|
&pxor (@C[1],&QWP($A[1][1],"esi"));
|
|
&pxor (@C[2],&QWP($A[1][2],"esi"));
|
|
&pxor (@C[3],&QWP($A[1][3],"esi"));
|
|
&pxor (@C[4],&QWP($A[1][4],"esi"));
|
|
|
|
&pxor (@C[0],&QWP($A[2][0],"esi"));
|
|
&pxor (@C[1],&QWP($A[2][1],"esi"));
|
|
&pxor (@C[2],&QWP($A[2][2],"esi"));
|
|
&pxor (@C[3],&QWP($A[2][3],"esi"));
|
|
&pxor (@C[4],&QWP($A[2][4],"esi"));
|
|
|
|
&pxor (@C[2],&QWP($A[3][2],"esi"));
|
|
&pxor (@C[0],&QWP($A[3][0],"esi"));
|
|
&pxor (@C[1],&QWP($A[3][1],"esi"));
|
|
&pxor (@C[3],&QWP($A[3][3],"esi"));
|
|
&movq (@T[0],@C[2]);
|
|
&pxor (@C[4],&QWP($A[3][4],"esi"));
|
|
|
|
&movq (@T[2],@C[2]);
|
|
&psrlq (@T[0],63);
|
|
&movq (@T[1],@C[0]);
|
|
&psllq (@T[2],1);
|
|
&pxor (@T[0],@C[0]);
|
|
&psrlq (@C[0],63);
|
|
&pxor (@T[0],@T[2]);
|
|
&psllq (@T[1],1);
|
|
&movq (@T[2],@C[1]);
|
|
&movq (&QWP(@D[1],"esp"),@T[0]); # D[1] = E[0] = ROL64(C[2], 1) ^ C[0];
|
|
|
|
&pxor (@T[1],@C[0]);
|
|
&psrlq (@T[2],63);
|
|
&pxor (@T[1],@C[3]);
|
|
&movq (@C[0],@C[1]);
|
|
&movq (&QWP(@D[4],"esp"),@T[1]); # D[4] = E[1] = ROL64(C[0], 1) ^ C[3];
|
|
|
|
&psllq (@C[0],1);
|
|
&pxor (@T[2],@C[4]);
|
|
&pxor (@C[0],@T[2]);
|
|
|
|
&movq (@T[2],@C[3]);
|
|
&psrlq (@C[3],63);
|
|
&movq (&QWP(@D[0],"esp"),@C[0]); # D[0] = C[0] = ROL64(C[1], 1) ^ C[4];
|
|
&psllq (@T[2],1);
|
|
&movq (@T[0],@C[4]);
|
|
&psrlq (@C[4],63);
|
|
&pxor (@C[1],@C[3]);
|
|
&psllq (@T[0],1);
|
|
&pxor (@C[1],@T[2]);
|
|
&pxor (@C[2],@C[4]);
|
|
&movq (&QWP(@D[2],"esp"),@C[1]); # D[2] = C[1] = ROL64(C[3], 1) ^ C[1];
|
|
&pxor (@C[2],@T[0]);
|
|
|
|
######################################### first Rho(0) is special
|
|
&movq (@C[3],&QWP($A[3][3],"esi"));
|
|
&movq (&QWP(@D[3],"esp"),@C[2]); # D[3] = C[2] = ROL64(C[4], 1) ^ C[2];
|
|
&pxor (@C[3],@C[2]);
|
|
&movq (@C[4],&QWP($A[4][4],"esi"));
|
|
&movq (@T[2],@C[3]);
|
|
&psrlq (@C[3],64-$rhotates[3][3]);
|
|
&pxor (@C[4],@T[1]);
|
|
&psllq (@T[2],$rhotates[3][3]);
|
|
&movq (@T[1],@C[4]);
|
|
&psrlq (@C[4],64-$rhotates[4][4]);
|
|
&por (@C[3],@T[2]); # C[3] = ROL64(A[3][3] ^ C[2], rhotates[3][3]); /* D[3] */
|
|
&psllq (@T[1],$rhotates[4][4]);
|
|
|
|
&movq (@C[2],&QWP($A[2][2],"esi"));
|
|
&por (@C[4],@T[1]); # C[4] = ROL64(A[4][4] ^ E[1], rhotates[4][4]); /* D[4] */
|
|
&pxor (@C[2],@C[1]);
|
|
&movq (@C[1],&QWP($A[1][1],"esi"));
|
|
&movq (@T[1],@C[2]);
|
|
&psrlq (@C[2],64-$rhotates[2][2]);
|
|
&pxor (@C[1],&QWP(@D[1],"esp"));
|
|
&psllq (@T[1],$rhotates[2][2]);
|
|
|
|
&movq (@T[2],@C[1]);
|
|
&psrlq (@C[1],64-$rhotates[1][1]);
|
|
&por (@C[2],@T[1]); # C[2] = ROL64(A[2][2] ^ C[1], rhotates[2][2]); /* D[2] */
|
|
&psllq (@T[2],$rhotates[1][1]);
|
|
&pxor (@C[0],&QWP($A[0][0],"esi")); # /* rotate by 0 */ /* D[0] */
|
|
&por (@C[1],@T[2]); # C[1] = ROL64(A[1][1] ^ D[1], rhotates[1][1]);
|
|
|
|
sub Chi() { ######### regular Chi step
|
|
my ($y,$xrho) = @_;
|
|
|
|
&movq (@T[0],@C[1]);
|
|
&movq (@T[1],@C[2]);
|
|
&pandn (@T[0],@C[2]);
|
|
&pandn (@C[2],@C[3]);
|
|
&pxor (@T[0],@C[0]);
|
|
&pxor (@C[2],@C[1]);
|
|
&pxor (@T[0],&QWP(0,"ebx")) if ($y == 0);
|
|
&lea ("ebx",&DWP(8,"ebx")) if ($y == 0);
|
|
|
|
&movq (@T[2],@C[3]);
|
|
&movq (&QWP($A[$y][0],"edi"),@T[0]); # R[0][0] = C[0] ^ (~C[1] & C[2]) ^ iotas[i];
|
|
&movq (@T[0],@C[4]);
|
|
&pandn (@C[3],@C[4]);
|
|
&pandn (@C[4],@C[0]);
|
|
&pxor (@C[3],@T[1]);
|
|
&movq (&QWP($A[$y][1],"edi"),@C[2]); # R[0][1] = C[1] ^ (~C[2] & C[3]);
|
|
&pxor (@C[4],@T[2]);
|
|
&movq (@T[2],&QWP($A[0][$xrho],"esi")) if (defined($xrho));
|
|
|
|
&movq (&QWP($A[$y][2],"edi"),@C[3]); # R[0][2] = C[2] ^ (~C[3] & C[4]);
|
|
&pandn (@C[0],@C[1]);
|
|
&movq (&QWP($A[$y][3],"edi"),@C[4]); # R[0][3] = C[3] ^ (~C[4] & C[0]);
|
|
&pxor (@C[0],@T[0]);
|
|
&pxor (@T[2],&QWP(@D[$xrho],"esp")) if (defined($xrho));
|
|
&movq (&QWP($A[$y][4],"edi"),@C[0]); # R[0][4] = C[4] ^ (~C[0] & C[1]);
|
|
}
|
|
&Chi (0, 3);
|
|
|
|
sub Rho() { ######### regular Rho step
|
|
my $x = shift;
|
|
|
|
#&movq (@T[2],&QWP($A[0][$x],"esi")); # moved to Chi
|
|
#&pxor (@T[2],&QWP(@D[$x],"esp")); # moved to Chi
|
|
&movq (@C[0],@T[2]);
|
|
&psrlq (@T[2],64-$rhotates[0][$x]);
|
|
&movq (@C[1],&QWP($A[1][($x+1)%5],"esi"));
|
|
&psllq (@C[0],$rhotates[0][$x]);
|
|
&pxor (@C[1],&QWP(@D[($x+1)%5],"esp"));
|
|
&por (@C[0],@T[2]); # C[0] = ROL64(A[0][3] ^ D[3], rhotates[0][3]);
|
|
|
|
&movq (@T[1],@C[1]);
|
|
&psrlq (@C[1],64-$rhotates[1][($x+1)%5]);
|
|
&movq (@C[2],&QWP($A[2][($x+2)%5],"esi"));
|
|
&psllq (@T[1],$rhotates[1][($x+1)%5]);
|
|
&pxor (@C[2],&QWP(@D[($x+2)%5],"esp"));
|
|
&por (@C[1],@T[1]); # C[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]);
|
|
|
|
&movq (@T[2],@C[2]);
|
|
&psrlq (@C[2],64-$rhotates[2][($x+2)%5]);
|
|
&movq (@C[3],&QWP($A[3][($x+3)%5],"esi"));
|
|
&psllq (@T[2],$rhotates[2][($x+2)%5]);
|
|
&pxor (@C[3],&QWP(@D[($x+3)%5],"esp"));
|
|
&por (@C[2],@T[2]); # C[2] = ROL64(A[2][0] ^ D[0], rhotates[2][0]);
|
|
|
|
&movq (@T[0],@C[3]);
|
|
&psrlq (@C[3],64-$rhotates[3][($x+3)%5]);
|
|
&movq (@C[4],&QWP($A[4][($x+4)%5],"esi"));
|
|
&psllq (@T[0],$rhotates[3][($x+3)%5]);
|
|
&pxor (@C[4],&QWP(@D[($x+4)%5],"esp"));
|
|
&por (@C[3],@T[0]); # C[3] = ROL64(A[3][1] ^ D[1], rhotates[3][1]);
|
|
|
|
&movq (@T[1],@C[4]);
|
|
&psrlq (@C[4],64-$rhotates[4][($x+4)%5]);
|
|
&psllq (@T[1],$rhotates[4][($x+4)%5]);
|
|
&por (@C[4],@T[1]); # C[4] = ROL64(A[4][2] ^ D[2], rhotates[4][2]);
|
|
}
|
|
&Rho (3); &Chi (1, 1);
|
|
&Rho (1); &Chi (2, 4);
|
|
&Rho (4); &Chi (3, 2);
|
|
&Rho (2); ###&Chi (4);
|
|
|
|
&movq (@T[0],@C[0]); ######### last Chi(4) is special
|
|
&xor ("edi","esi"); # &xchg ("esi","edi");
|
|
&movq (&QWP(@D[1],"esp"),@C[1]);
|
|
&xor ("esi","edi");
|
|
&xor ("edi","esi");
|
|
|
|
&movq (@T[1],@C[1]);
|
|
&movq (@T[2],@C[2]);
|
|
&pandn (@T[1],@C[2]);
|
|
&pandn (@T[2],@C[3]);
|
|
&pxor (@C[0],@T[1]);
|
|
&pxor (@C[1],@T[2]);
|
|
|
|
&movq (@T[1],@C[3]);
|
|
&movq (&QWP($A[4][0],"esi"),@C[0]); # R[4][0] = C[0] ^= (~C[1] & C[2]);
|
|
&pandn (@T[1],@C[4]);
|
|
&movq (&QWP($A[4][1],"esi"),@C[1]); # R[4][1] = C[1] ^= (~C[2] & C[3]);
|
|
&pxor (@C[2],@T[1]);
|
|
&movq (@T[2],@C[4]);
|
|
&movq (&QWP($A[4][2],"esi"),@C[2]); # R[4][2] = C[2] ^= (~C[3] & C[4]);
|
|
|
|
&pandn (@T[2],@T[0]);
|
|
&pandn (@T[0],&QWP(@D[1],"esp"));
|
|
&pxor (@C[3],@T[2]);
|
|
&pxor (@C[4],@T[0]);
|
|
&movq (&QWP($A[4][3],"esi"),@C[3]); # R[4][3] = C[3] ^= (~C[4] & D[0]);
|
|
&sub ("ecx",1);
|
|
&movq (&QWP($A[4][4],"esi"),@C[4]); # R[4][4] = C[4] ^= (~D[0] & D[1]);
|
|
&jnz (&label("loop"));
|
|
|
|
&lea ("ebx",&DWP(-192,"ebx")); # rewind iotas
|
|
&ret ();
|
|
&function_end_B("_KeccakF1600");
|
|
|
|
&function_begin("KeccakF1600");
|
|
&mov ("esi",&wparam(0));
|
|
&mov ("ebp","esp");
|
|
&sub ("esp",240);
|
|
&call (&label("pic_point"));
|
|
&set_label("pic_point");
|
|
&blindpop("ebx");
|
|
&lea ("ebx",&DWP(&label("iotas")."-".&label("pic_point"),"ebx"));
|
|
&and ("esp",-8);
|
|
&lea ("esi",&DWP(100,"esi")); # size optimization
|
|
&lea ("edi",&DWP(8*5+100,"esp")); # size optimization
|
|
|
|
&call ("_KeccakF1600");
|
|
|
|
&mov ("esp","ebp");
|
|
&emms ();
|
|
&function_end("KeccakF1600");
|
|
|
|
&function_begin("SHA3_absorb");
|
|
&mov ("esi",&wparam(0)); # A[][]
|
|
&mov ("eax",&wparam(1)); # inp
|
|
&mov ("ecx",&wparam(2)); # len
|
|
&mov ("edx",&wparam(3)); # bsz
|
|
&mov ("ebp","esp");
|
|
&sub ("esp",240+8);
|
|
&call (&label("pic_point"));
|
|
&set_label("pic_point");
|
|
&blindpop("ebx");
|
|
&lea ("ebx",&DWP(&label("iotas")."-".&label("pic_point"),"ebx"));
|
|
&and ("esp",-8);
|
|
|
|
&mov ("edi","esi");
|
|
&lea ("esi",&DWP(100,"esi")); # size optimization
|
|
&mov (&DWP(-4,"ebp"),"edx"); # save bsz
|
|
&jmp (&label("loop"));
|
|
|
|
&set_label("loop",16);
|
|
&cmp ("ecx","edx"); # len < bsz?
|
|
&jc (&label("absorbed"));
|
|
|
|
&shr ("edx",3); # bsz /= 8
|
|
&set_label("block");
|
|
&movq ("mm0",&QWP(0,"eax"));
|
|
&lea ("eax",&DWP(8,"eax"));
|
|
&pxor ("mm0",&QWP(0,"edi"));
|
|
&lea ("edi",&DWP(8,"edi"));
|
|
&sub ("ecx",8); # len -= 8
|
|
&movq (&QWP(-8,"edi"),"mm0");
|
|
&dec ("edx"); # bsz--
|
|
&jnz (&label("block"));
|
|
|
|
&lea ("edi",&DWP(8*5+100,"esp")); # size optimization
|
|
&mov (&DWP(-8,"ebp"),"ecx"); # save len
|
|
&call ("_KeccakF1600");
|
|
&mov ("ecx",&DWP(-8,"ebp")); # pull len
|
|
&mov ("edx",&DWP(-4,"ebp")); # pull bsz
|
|
&lea ("edi",&DWP(-100,"esi"));
|
|
&jmp (&label("loop"));
|
|
|
|
&set_label("absorbed",16);
|
|
&mov ("eax","ecx"); # return value
|
|
&mov ("esp","ebp");
|
|
&emms ();
|
|
&function_end("SHA3_absorb");
|
|
|
|
&function_begin("SHA3_squeeze");
|
|
&mov ("esi",&wparam(0)); # A[][]
|
|
&mov ("eax",&wparam(1)); # out
|
|
&mov ("ecx",&wparam(2)); # len
|
|
&mov ("edx",&wparam(3)); # bsz
|
|
&mov ("ebp","esp");
|
|
&sub ("esp",240+8);
|
|
&call (&label("pic_point"));
|
|
&set_label("pic_point");
|
|
&blindpop("ebx");
|
|
&lea ("ebx",&DWP(&label("iotas")."-".&label("pic_point"),"ebx"));
|
|
&and ("esp",-8);
|
|
|
|
&shr ("edx",3); # bsz /= 8
|
|
&mov ("edi","esi");
|
|
&lea ("esi",&DWP(100,"esi")); # size optimization
|
|
&mov (&DWP(-4,"ebp"),"edx"); # save bsz
|
|
&jmp (&label("loop"));
|
|
|
|
&set_label("loop",16);
|
|
&cmp ("ecx",8); # len < 8?
|
|
&jc (&label("tail"));
|
|
|
|
&movq ("mm0",&QWP(0,"edi"));
|
|
&lea ("edi",&DWP(8,"edi"));
|
|
&movq (&QWP(0,"eax"),"mm0");
|
|
&lea ("eax",&DWP(8,"eax"));
|
|
&sub ("ecx",8); # len -= 8
|
|
&jz (&label("done"));
|
|
|
|
&dec ("edx"); # bsz--
|
|
&jnz (&label("loop"));
|
|
|
|
&lea ("edi",&DWP(8*5+100,"esp")); # size optimization
|
|
&mov (&DWP(-8,"ebp"),"ecx"); # save len
|
|
&call ("_KeccakF1600");
|
|
&mov ("ecx",&DWP(-8,"ebp")); # pull len
|
|
&mov ("edx",&DWP(-4,"ebp")); # pull bsz
|
|
&lea ("edi",&DWP(-100,"esi"));
|
|
&jmp (&label("loop"));
|
|
|
|
&set_label("tail",16);
|
|
&mov ("esi","edi");
|
|
&mov ("edi","eax");
|
|
&data_word("0xA4F39066"); # rep movsb
|
|
|
|
&set_label("done");
|
|
&mov ("esp","ebp");
|
|
&emms ();
|
|
&function_end("SHA3_squeeze");
|
|
|
|
&set_label("iotas",32);
|
|
&data_word(0x00000001,0x00000000);
|
|
&data_word(0x00008082,0x00000000);
|
|
&data_word(0x0000808a,0x80000000);
|
|
&data_word(0x80008000,0x80000000);
|
|
&data_word(0x0000808b,0x00000000);
|
|
&data_word(0x80000001,0x00000000);
|
|
&data_word(0x80008081,0x80000000);
|
|
&data_word(0x00008009,0x80000000);
|
|
&data_word(0x0000008a,0x00000000);
|
|
&data_word(0x00000088,0x00000000);
|
|
&data_word(0x80008009,0x00000000);
|
|
&data_word(0x8000000a,0x00000000);
|
|
&data_word(0x8000808b,0x00000000);
|
|
&data_word(0x0000008b,0x80000000);
|
|
&data_word(0x00008089,0x80000000);
|
|
&data_word(0x00008003,0x80000000);
|
|
&data_word(0x00008002,0x80000000);
|
|
&data_word(0x00000080,0x80000000);
|
|
&data_word(0x0000800a,0x00000000);
|
|
&data_word(0x8000000a,0x80000000);
|
|
&data_word(0x80008081,0x80000000);
|
|
&data_word(0x00008080,0x80000000);
|
|
&data_word(0x80000001,0x00000000);
|
|
&data_word(0x80008008,0x80000000);
|
|
&asciz("Keccak-1600 absorb and squeeze for MMX, CRYPTOGAMS by <appro\@openssl.org>");
|
|
|
|
&asm_finish();
|
|
|
|
close STDOUT;
|